How to make good visualizations?

Design Criteria

Expressiveness

Tell the truth, the whole truth and nothing but the truth!

Effectiveness

Use visual encodings that people can decode better (faster and more accurate). A set of facts is expressible in a visual language if the sentences (i.e. the visualizations) in the language **express all the facts** in the set of data, and **only** the facts in the data.

A visualization is more effective than another visualization if the information conveyed by one visualization is more readily perceived than the information in the other visualization. Effectiveness "Use visual encodings that people can decode better"

1. Learn abo Data Models	out s	2. Learn about Visual Encoding	3. Learn the Rules	4.6	Examples	5. Summarize with practical	
Task Questions, goals, assumptions			sorting, log-scale, binning, grouping, aggregating		tips position (x, y), color, shape,		
Data Physical data	a type	Pro	ocessing	Image	size,		
Conceptual data type		Ma	ipping /	Graphical marks			
Domain metadata semantics	nominal, ordinal, quantitativ	Vis ve?	ual Encoding		points, bars, lines, .		

Outline

conventions

	Latitude	Longitude	Surface	Date	Time (UTC)	Temperature (°C)
	41.25	-120.9762	Land	Jan 1, 2022	05:00	21.78
	89.42	170.7629	Sea	Jan 1, 2022	06:20	-40.80
Data Model Formal Description	0.70	130.5643	Land	Jan 1, 2022	08:20	45.60
of the data set	decimal	decimal	string	date	time	decimal (float)
Conceptual Model Mental constructions include semantics and support reasoning	Spatial lo	cation	surface	Time of meas	urement	Temperature

Data Models

N - Nominal (labels or categories) Fruits: apples, oranges, ...

O - Ordered Quality of meat: Grade A, AA, AAA

Q - Interval (location of zero arbitrary) Dates: Jan, 19, 2006; Location: (LAT 33.98, LONG -118.45) Only differences (i.e., intervals) may be compared ID (sets and sequences)

Temporal

2D (maps)

3D (shapes)

nD (relational)

Trees (hierarchies)

Networks (graphs)

Data Type A categorization that helps us determine which visual encoding to use

Data Types

Q - Ratio (zero fixed) Physical measurement: length, mass, time duration, counts and amounts Can measure ratios or proportions

	Latitude	Longitude	Surface	Date	Time (UTC)	Temperature (°C)	Temperature
	41.25	-120.9762	Land	Jan 1, 2022	05:00	21.78	Warm
	89.42	170.7629	Sea	Jan 1, 2022	06:20	-40.80	Cold
	0.70	130.5643	Land	Jan 1, 2022	08:20	45.60	Hot
Data Model	decimal	decimal	string	date	time	decimal (float)	string
Conceptual Model	Spatial lo	cation	surface	Time of meas	urement	Temperature	Feeling
Data Type	Q-interva	l	Nominal	Q-interval		Q-ratio	Ordinal
A categorization that helps us determine which visual encoding to use	2-D vecto	or	1-D	1-D		1-D	1-D

Data Types

- An image is set of signs
- Sender encodes information in signs
- Receiver decodes information from the signs

What can I decode from this image?

- A, B, C are distinguishable
- B is between A and C
- The distance between B and C is twice that of AB

What can I encode then using the position (channel) of points (marks)?

• Quantitative variables

Visual language is a Sign System

Jacques Bertin, 1967 Semiology of Graphics

Bertin's Visual Encoding Variables & Levels of Organization

Quantitative

Ordinal

Nominal

Mackinlay's Effectiveness Ranking

Assume k visual encodings and n data attributes. Pick the "best" encoding among a combinatorial set of possibilities of size $(n + 1)^k$

• Principle of Consistency

The properties of the image (visual variables) should match the properties of the data.

• Principle of Importance Ordering Encode the most important information in the most effective way.

Input: data model and type, ordered list of data variables to show

APT searches over design space

- Test expressiveness of each visual encoding
- Generate encodings that pass test Rank by perceptual effectiveness criteria
- Output the "most effective" visualization

Input variables: I. Price 2. Mileage 3. Repair 4. Weight

APT - "A Presentation Tool", 1986

Mackinlay's Automated Design Algorithm

Input I-D Nominal sequence of car origins

Origin Europe Japan Europe Japan USA USA USA Japan

П

250

250

Expressive?

. . .

Input I-D Nominal sequence of car origins

Origin
Europe
Japan
Europe
Japan
USA
USA
USA
Japan

250

USA

Effective?

. . .

Input I-D Quantitative sequence of mileage

Miles per gallon
30.4
48.1
20.5
10.0
35.2
30.8
40.1
21.1

Expressive?

Raw

Aggregate (Count)

98

Miles per gallon
30.4
48.1
20.5
10.0
35.2
30.8
40.1
21.1

98

Effective?

Raw (with Layout Algorithm)

Input I-D Quantitative sequence of mileage

Miles per gallon
30.4
48.1
20.5
10.0
35.2
30.8
40.1
21.1

Bubble Chart

35

25

45

50

Input $2-DQ \times Q$

Hourse-power	Mileage
120	28
122	25
144	20
222	14
230	15
80	30
60	40
62	47

Aggregate (Count)

20

30

40

Miles_per_Gallon

Expressive? Effective?

Expressive? Effective?

Input 2-D N × Q

Raw

Expressive? Effective?

Design Tips

Gee-Whiz Graphs

How to lie with statistics. Huff. Govt payrolls in 1937

Include Zero?

THE BLOG

Over 100 Million Now Receiving Federal Welfare

2:40 PM, AUG 8, 2012 - BY DANIEL HALPER

🖂 🖪 💟 🛃 📄 STRALE PAGE 🚔 PRINT 🖍 LANSER TERT 🖌 STRALLER TERT 🛕 ALERTS

A new chart set to be released later today by the Republican side of the Senate Budget Committee details a startling statistic: "Over 100 Million People in U.S. Now Receiving Some Form Of Federal Welfare."

This violates the expressiveness principle!

Bar length encodes the amount

Q-Ratio "We care about the amount shown" Q-Interval "We care about the relative position"

Include Zero?

The bars are draw attention away from the key feature of the data: the differences in life expectancy among the different countries.

The countries are ordered alphabetically, which causes a dots to form a disordered cloud of points. This makes the figure difficult to read.

Can be made better by removing the y-axis and labeling each dot: avoids generating the visual perception of a magnitude conveyed by the distance from the name to the dot

Bar vs. Dot Plots

Fundamentals of Data Visualization, Wilke

Zero, Bars, Dots & Log Scales

Fundamentals of Data Visualization, Wilke

Address data skew

e.g., long tails, outliers

Enables comparison within and across multiple orders of magnitude.

Focus on multiplicative factors

e.g., The GDP of Australia is 64 times that of Papa New Guinea

The logarithm transforms **x** to **+**!

Percentage change, not linear difference.

Constraint: **positive, non-zero values** Constraint: **audience familiarity?**

More about Log Scales

Perceptual Effort

Violates Expressiveness!

Legends

Fundamentals of Data Visualization, Wilke

population growth, 2000 to 2010

Color

Fundamentals of Data Visualization, Wilke

Exercise 2 will be released end of this week

Proposal discussions on Wednesday

- 1. Form your groups
- 2. Meet to go over group contracts
- 3. Come prepared to give us a short discussion of what you want to do
- 4. Submit a one-page proposal next week

Next in the Course