Lab 1 - SimpleDB

Database Systems, CS-UH 2214

Assigned: Sept 30, 2025 Due: Oct 14, 2025

1 Overview

Through a series of labs you will create a basic database management system called SimpleDB'. For this lab, you will
focus on implementing the core modules required to access stored data on disk; in future labs, you will add support
for various query processing operators.

SimpleDB is written in Java. We have provided you with a set of mostly unimplemented classes and interfaces. You
will need to write the code for these classes. We will grade your code by running a set of system tests written using
JUnit. We have also provided a number of unit tests, which we will not use for grading but that you may find useful
in verifying that your code works.

The remainder of this document describes the basic architecture of SimpleDB, gives some suggestions about how to
start coding, and discusses how to hand in your lab.

We strongly recommend that you start as early as possible on this lab. It requires you to write a fair amount of
code!

2 Environment Setup

Start by downloading the starter code for lab 1

Because the code is written in Java, it should work under Windows as well, although the directions in this document
may not apply.

We have included in Section 2.5 instruction how to load the project in Eclipse.

This lab is based on MIT’s 6.830 - Database Systems course. The labs were initially created by Prof. Sam Madden.

http://junit.sourceforge.net/

Database Systems, CS-UH 2214 Lab 1 - SimpleDB

2.1 Getting started

SimpleDB uses the Ant build tool to compile the code and run tests. Ant is similar to make, but the build file is
written in XML and is somewhat better suited to Java code. Most modern Linux distributions include Ant.

To help you during development, we have provided a set of unit tests in addition to the end-to-end tests that we
use for grading. These are by no means comprehensive, and you should not rely on them exclusively to verify the
correctness of your project.

To run the unit tests use the test build target:

$ cd [project-directory]

$ # run all unit tests

$ ant test

$ # run a specific unit test

$ ant runtest -Dtest=TupleTest

You should see output similar to:

build output...

test:
[junit] Running simpledb.CatalogTest
[junit] Testsuite: simpledb.CatalogTest
[junit] Tests run: 2, Failures: 0, Errors: 2, Time elapsed: 0.037 sec
[junit] Tests run: 2, Failures: @, Errors: 2, Time elapsed: 0.037 sec

. stack traces and error reports ...

The output above indicates that two errors occurred during compilation; this is because the code we have given you
doesn’t yet work. As you complete parts of the lab, you will work towards passing additional unit tests.

If you wish to write new unit tests as you code, they should be added to the test/simpledb directory.

For more details about how to use Ant, see the manual. The Running Ant section provides details about using the
ant command. However, the quick reference table below should be sufficient for working on the labs.

Command Description

ant Build the default target (for simpledb, this is dist)

ant -projecthelp List all the targets in build.xml with descriptions.

ant dist Compile the code in src and package it in dist/simpledb.jar.
ant test Compile and run all the unit tests.

ant runtest -Dtest=testname Run the unit test named testname.

ant systemtest Compile and run all the system tests.

ant runsystest -Dtest=testname Compile and run the system test named testname.

If you are using a windows OS and don’t want to run ant tests from command line, you can also run ant within
eclipse. Right click build.xml, in the targets tab, you can see “runtest” “runsystest” etc. For example, select runtest
would be equivalent to “ant runtest” from command line. Arguments such as “-Dtest=testname” can be specified in
the “Main” Tab, “Arguments” text box. Note that you can also create a shortcut to runtest by copying from build.xml,
modifying targets and arguments and renaming it to, say, runtest_build.xml.

http://ant.apache.org/
http://www.gnu.org/software/make/manual/
http://ant.apache.org/manual/
http://ant.apache.org/manual/running.html

Database Systems, CS-UH 2214 Lab 1 - SimpleDB

2.2 Running end-to-end tests

We have also provided a set of end-to-end tests that will eventually be used for grading. These tests are structured as
JUnit tests that live in the test/simpledb/systemtest directory. To run all the system tests, use the systemtest build

target:

$ ant systemtest

. build output ...

[junit]
[junit]
[junit]
[junit]
[junit]
[junit]
[junit]
[junit]
[junit]
[junit]
[junit]
[junit]
[junit]

Testcase: testSmall took 0.017 sec
Caused an ERROR

expected to find the following tuples:
19128

java.lang.AssertionError: expected to find the following tuples:
19128

at simpledb.systemtest.SystemTestUtil.matchTuples(SystemTestUtil.java:122)
at simpledb.systemtest.SystemTestUtil.matchTuples(SystemTestUtil. java:83)
at simpledb.systemtest.SystemTestUtil.matchTuples(SystemTestUtil. java:75)
at simpledb.systemtest.ScanTest.validateScan(ScanTest.java:30)

at simpledb.systemtest.ScanTest.testSmall(ScanTest. java:40)

. more error messages ...

This indicates that this test failed, showing the stack trace where the error was detected. To debug, start by reading
the source code where the error occurred. When the tests pass, you will see something like the following:

$ ant systemtest

. build output ...

[junit]
[junit]
[junit]
[junit]
[junit]
[junit]
[junit]

Testsuite: simpledb.systemtest.ScanTest
Tests run: 3, Failures: @, Errors: 0, Time elapsed: 7.278 sec
Tests run: 3, Failures: @, Errors: 0, Time elapsed: 7.278 sec

Testcase: testSmall took ©0.937 sec
Testcase: testlLarge took 5.276 sec
Testcase: testRandom took 1.049 sec

BUILD SUCCESSFUL

Total time:

52 seconds

2.3 Creating dummy tables

It is likely you’ll want to create your own tests and your own data tables to test your own implementation of Sim-
pleDB. You can create any .txt file and convert it to a .dat file in SimpleDB’s HeapFile format using the command:

$ java -jar dist/simpledb.jar convert file.txt N

where file.txt is the name of the file and N is the number of columns in the file. Notice that file.txt has to be in the

Database Systems, CS-UH 2214 Lab 1 - SimpleDB

following format:

int1,int2,...,intN
int1,int2,...,intN
int1,int2,...,intN
int1,int2,...,intN

...where each intN is a non-negative integer.

To view the contents of a table, use the print command:

$ java -jar dist/simpledb.jar print file.dat N

where file.dat is the name of a table created with the convert command, and N is the number of columns in the file.

24

Working in IntelliJ IDEA

Intellij IDEA is a graphical software development environment that you might be more comfortable with working

m.

24.1

2.4.2

Setting the Lab Up in Intellij IDEA

Open Intellij and select Import Project.

In the dialog, select the folder where Lab 1 files are located.
Select Create Project from existing sources.

Continue clicking next leaving everything else as default.

Once the project is loaded, go to the Project Structure and then open the Modules settings. Open the Sources
tab and right-click on the java folder (located inside src) and set it as a sources folder.

It might be that Intelli] also created a separate module for the src folder. Remove that module.

Running Indivisual Unit and System Tests

You can run tests by right-clicking on a test class. For example you might want to right-click the class TupleTest
(located in “test/simpledb” folder), and then click Run “TupleTest’.

243

Running Ant Build Targets

If you want to run ant targets in Intelli] IDEA you can add the and project by opening the Ant tab on the right and
clicking the button with the plus symbol. In the dialog select the file build. xml. Now you will be able to select and
run ant actions through the Ant menu.

25

Working in Eclipse

Eclipse is a graphical software development environment that you might be more comfortable with working in. The
instructions we provide were generated by using Eclipse for Java Developers (not the enterprise edition) with Java

1.7.

https://www.jetbrains.com/idea/
http://www.eclipse.org

Database Systems, CS-UH 2214 Lab 1 - SimpleDB

2.5.1 Setting the Lab Up in Eclipse

+ Once Eclipse is installed, start it, and note that the first screen asks you to select a location for your workspace
(we will refer to this directory as $W). Select the directory containing your Lab1 folder.

« In Eclipse, select File — New — Project — Java — Java Project, and click Next.
« Enter “Lab1” as the project name.

« On the same screen that you entered the project name, select “Create project from existing source,” and navi-
gate to $W/Lab1.

« Click finish, and you should be able to see “Lab1” as a new project in the Project Explorer tab on the left-hand
side of your screen. Opening this project reveals the directory structure discussed above - implementation
code can be found in “src,” and unit tests and system tests found in “test.

Note: that this class assumes that you are using the official Oracle release of Java. This is the default on MacOS X, and
for most Windows Eclipse installs; but many Linux distributions default to alternate Java runtimes (like OpenJDK).
Please download the latest Java8 updates from Oracle Website, and use that Java version. If you don’t switch, you
may see spurious test failures in some of the performance tests in later labs.

Running Individual Unit and System Tests

To run a unit test or system test (both are JUnit tests, and can be initialized the same way), go to the Package Explorer
tab on the left side of your screen. Under the “Lab1” project, open the “test” directory. Unit tests are found in the
“simpledb” package, and system tests are found in the “simpledb.systemtests” package. To run one of these tests,
select the test (they are all called *Test.java - don’t select TestUtil.java or SystemTestUtil.java), right click on it, select
“Run As,” and select “JUnit Test” This will bring up a JUnit tab, which will tell you the status of the individual tests
within the JUnit test suite, and will show you exceptions and other errors that will help you debug problems.

2.5.2 Running Ant Build Targets

If you want to run commands such as “ant test” or “ant systemtest,” right click on build.xml in the Package Explorer.
Select “Run As,” and then “Ant Build..” (note: select the option with the ellipsis (...), otherwise you won’t be presented
with a set of build targets to run). Then, in the “Targets” tab of the next screen, check off the targets you want to
run (probably “dist” and one of “test” or “systemtest”). This should run the build targets and show you the results in
Eclipse’s console window.

2.5.3 Implementation hints
Before beginning to write code, we strongly encourage you to read through this entire document to get a feel for
the high-level design of SimpleDB.

You will need to fill in any piece of code that is not implemented. It will be obvious where we think you should write
code. You may need to add private methods and/or helper classes. You may change APIs, but make sure our grading
tests still run and make sure to mention, explain, and defend your decisions in your writeup.

In addition to the methods that you need to fill out for this lab, the class interfaces contain numerous methods that
you need not implement until subsequent labs. These will either be indicated per class:

// Not necessary for labl.
public class Insert implements DbIterator {

or per method:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Database Systems, CS-UH 2214 Lab 1 - SimpleDB

public boolean deleteTuple(Tuple t) throws DbException {
// some code goes here
// not necessary for lab1l
return false;

The code that you submit should compile without having to modify these methods.

We suggest exercises along this document to guide your implementation, but you may find that a different order
makes more sense for you.

Here’s a rough outline of one way you might proceed with your SimpleDB implementation:

« Implement the classes to manage tuples, namely Tuple, TupleDesc. We have already implemented Field, Int-
Field, StringField, and Type for you. Since you only need to support integer and (fixed length) string fields and
fixed length tuples, these are straightforward.

+ Implement the Catalog (this should be very simple).
« Implement the BufferPool constructor and the getPage() method.

« Implement the access methods, HeapPage and HeapFile and associated ID classes. A good portion of these
files has already been written for you.

« Implement the operator SeqScan.

« At this point, you should be able to pass the ScanTest system test, which is the goal for this lab.

Section 3 below walks you through these implementation steps and the unit tests corresponding to each one in more
detail.

2.5.4 Transactions, locking, and recovery

Asyoulook through the interfaces we have provided you, you will see a number of references to locking, transactions,
and recovery. You do not need to support these features in this lab. The test code we have provided you with generates
a fake transaction ID that is passed into the operators of the query it runs; you should pass this transaction ID into
other operators and the buffer pool.

3 SimpleDB Architecture and Implementation Guide
SimpleDB consists of:

« Classes that represent fields, tuples, and tuple schemas;
« Classes that apply predicates and conditions to tuples;

« One or more access methods (e.g., heap files) that store relations on disk and provide a way to iterate through
tuples of those relations;

« A collection of operator classes (e.g., select, join, insert, delete, etc.) that process tuples;

« A buffer pool that caches active tuples and pages in memory and handles concurrency control and transactions
(neither of which you need to worry about for this lab); and,

« A catalog that stores information about available tables and their schemas.

Database Systems, CS-UH 2214 Lab 1 - SimpleDB

SimpleDB does not include many things that you may think of as being a part of a “database.” In particular, SimpleDB
does not have:

« (In this lab), a SQL front end or parser that allows you to type queries directly into SimpleDB. Instead, queries
are built up by chaining a set of operators together into a hand-built query plan (see Section 2.7). We will
provide a simple parser for use in later labs.

» Views.
« Data types except integers and fixed length strings.
+ (In this lab) Query optimizer.

« (In this lab) Indices.

In the rest of this Section, we describe each of the main components of SimpleDB that you will need to implement in
this lab. You should use the exercises in this discussion to guide your implementation. This document is by no means
a complete specification for SimpleDB; you will need to make decisions about how to design and implement various
parts of the system. Note that for Lab 1 you do not need to implement any operators (e.g., select, join, project) except
sequential scan. You will add support for additional operators in future labs.

3.1 The Database Class

The Database class provides access to a collection of static objects that are the global state of the database. In
particular, this includes methods to access the catalog (the list of all the tables in the database), the buffer pool (the
collection of database file pages that are currently resident in memory), and the log file. You will not need to worry
about the log file in this lab. We have implemented the Database class for you. You should take a look at this file as
you will need to access these objects.

3.2 Fields and Tuples

Tuples in SimpleDB are quite basic. They consist of a collection of Field objects, one per field in the Tuple. Field
is an interface that different data types (e.g., integer, string) implement. Tuple objects are created by the underlying
access methods (e.g., heap files, or B-trees), as described in the next section. Tuples also have a type (or schema),
called a tuple descriptor, represented by a TupleDesc object. This object consists of a collection of Type objects, one
per field in the tuple, each of which describes the type of the corresponding field.

Exercise 1: [2 points] Implement the skeleton methods in:

1. src/simpledb/TupleDesc.java

2. src/simpledb/Tuple.java

Unit Tests to Pass: At this point, your code should pass the unit tests TupleTest and TupleDescTest. At this
point, modifyRecordId() should fail because you haven’t implemented it yet.

3.3 Catalog

The catalog (class Catalog in SimpleDB) consists of a list of the tables and schemas of the tables that are currently in
the database. You will need to support the ability to add a new table, as well as getting information about a particular
table. Associated with each table is a TupleDesc object that allows operators to determine the types and number of
fields in a table.

Database Systems, CS-UH 2214 Lab 1 - SimpleDB

The global catalog is a single instance of Catalog that is allocated for the entire SimpleDB process. The global
catalog can be retrieved via the method Database.getCatalog(), and the same goes for the global buffer pool
(using Database.getBufferPool()).

Exercise 2: [2 points] Implement the skeleton methods in:
1. src/simpledb/Catalog.java

Unit Tests to Pass: At this point, your code should pass the unit tests in CatalogTest.

3.4 BufferPool

The buffer pool (class BufferPool in SimpleDB) is responsible for caching pages in memory that have been recently
read from disk. All operators read and write pages from various files on disk through the buffer pool. It consists of a
fixed number of pages, defined by the numPages parameter to the BufferPool constructor. In later labs, you will im-
plement an eviction policy. For this lab, you only need to implement the constructor and the BufferPool . getPage ()
method used by the SeqScan operator. The BufferPool should store up to numPages pages. For this lab, if more than
numPages requests are made for different pages, then instead of implementing an eviction policy, you may throw a
DbException. In future labs you will be required to implement an eviction policy.

The Database class provides a static method, Database.getBufferPool(), that returns a reference to the single
BufferPool instance for the entire SimpleDB process.

Exercise 3: [3 points] Implement the getPage() method in:
1. src/simpledb/BufferPool.java

Unit Tests to Pass: We have not provided unit tests for BufferPool. The functionality you implemented will be
tested in the implementation of HeapFile below. You should use the DbFile.readPage method to access pages of a
DbFile.

3.5 HeapFile Access

Access methods provide a way to read or write data from disk that is arranged in a specific way. Common access
methods include heap files (unsorted files of tuples) and B-trees; for this assignment, you will only implement a heap
file access method, and we have written some of the code for you.

A HeapFile object is arranged into a set of pages, each of which consists of a fixed number of bytes for storing
tuples, (defined by the constant BufferPool.DEFAULT_PAGE_SIZE), including a header. In SimpleDB, there is one
HeapFile object for each table in the database. Each page in a HeapFile is arranged as a set of slots, each of which
can hold one tuple (tuples for a given table in SimpleDB are all of the same size). In addition to these slots, each page
has a header that consists of a bitmap with one bit per tuple slot. If the bit corresponding to a particular tuple is 1,
it indicates that the tuple is valid; if it is 0, the tuple is invalid (e.g., has been deleted or was never initialized.) Pages
of HeapFile objects are of type HeapPage which implements the Page interface. Pages are stored in the buffer pool
but are read and written by the HeapFile class.

SimpleDB stores heap files on disk in more or less the same format they are stored in memory. Each file consists of
page data arranged consecutively on disk. Each page consists of one or more bytes representing the header, followed
by the page size bytes of actual page content. Each tuple requires tuple size * 8 bits for its content and 1 bit for the
header. Thus, the number of tuples that can fit in a single page is:

tuples per page = floor((_page size_ * 8) / (_tuple size_ x 8 + 1))

Database Systems, CS-UH 2214 Lab 1 - SimpleDB

Where tuple size is the size of a tuple in the page in bytes. The idea here is that each tuple requires one additional
bit of storage in the header. We compute the number of bits in a page (by mulitplying page size by 8), and divide
this quantity by the number of bits in a tuple (including this extra header bit) to get the number of tuples per page.
The floor operation rounds down to the nearest integer number of tuples (we don’t want to store partial tuples on a
page!)

Once we know the number of tuples per page, the number of bytes required to store the header is simply:

headerBytes = ceiling(tupsPerPage/8)

The ceiling operation rounds up to the nearest integer number of bytes (we never store less than a full byte of header
information.)

The low (least significant) bits of each byte represents the status of the slots that are earlier in the file. Hence, the
lowest bit of the first byte represents whether or not the first slot in the page is in use. The second lowest bit of the
first byte represents whether or not the second slot in the page is in use, and so on. Also, note that the high-order
bits of the last byte may not correspond to a slot that is actually in the file, since the number of slots may not be a
multiple of 8. Also note that all Java virtual machines are big-endian.

Exercise 4: [5 points] Implement the skeleton methods in:

1. src/simpledb/HeapPageld.java
2. src/simpledb/RecordID.java

3. src/simpledb/HeapPage.java

Although you will not use them directly in Lab 1, we ask you to implement getNumEmptySlots() and isSlotUsed()
in HeapPage. These require pushing around bits in the page header. You may find it helpful to look at the other meth-
ods that have been provided in HeapPage or in src/simpledb/HeapFileEncoder. java to understand the layout of
pages.

You will also need to implement an Iterator over the tuples in the page, which may involve an auxiliary class or data
structure.

Unit Tests to Pass: At this point, your code should pass the unit tests in HeapPageIdTest, RecordIDTest, and
HeapPageReadTest.

After you have implemented HeapPage, you will write methods for HeapFile in this lab to calculate the number of
pages in a file and to read a page from the file. You will then be able to fetch tuples from a file stored on disk.

Exercise 5: [3 points] Implement the skeleton methods in:
1. src/simpledb/HeapkFile.java

To read a page from disk, you will first need to calculate the correct offset in the file. Hint: you will need random
access to the file in order to read and write pages at arbitrary offsets. You should not call BufferPool methods when
reading a page from disk.

You will also need to implement the HeapFile.iterator() method, which should iterate through through the
tuples of each page in the HeapFile. The iterator must use the BufferPool.getPage () method to access pages in
the HeapFile. This method loads the page into the buffer pool and will eventually be used (in a later lab) to implement
locking-based concurrency control and recovery. Do not load the entire table into memory on the open() call - this
will cause an out of memory error for very large tables.

Unit Tests to Pass: At this point, your code should pass the unit tests in HeapFileReadTest.

http://en.wikipedia.org/wiki/Endianness

Database Systems, CS-UH 2214 Lab 1 - SimpleDB

3.6 Operators
Operators are responsible for the actual execution of the query plan. They implement the operations of the relational
algebra. In SimpleDB, operators are iterator based; each operator implements the DbIterator interface.

Operators are connected together into a plan by passing lower-level operators into the constructors of higher-level
operators, i.e., by ‘chaining them together. Special access method operators at the leaves of the plan are responsible
for reading data from the disk (and hence do not have any operators below them).

At the top of the plan, the program interacting with SimpleDB simply calls getNext on the root operator; this
operator then calls getNext on its children, and so on, until these leaf operators are called. They fetch tuples from
disk and pass them up the tree (as return arguments to getNext); tuples propagate up the plan in this way until they
are output at the root or combined or rejected by another operator in the plan.

For this lab, you will only need to implement one SimpleDB operator.

Exercise 6: [3 points] Implement the skeleton methods in:

1. src/simpledb/SeqScan.java
This operator sequentially scans all of the tuples from the pages of the table specified by the tableid in the con-
structor. This operator should access tuples through the DbFile.iterator() method.

Unit Tests to Pass: At this point, you should be able to complete the ScanTest system test. Good work!

You will fill in other operators in subsequent labs.

3.7 A simple query

The purpose of this section is to illustrate how these various components are connected together to process a simple
query.

Suppose you have a data file, “some_data_file.txt”, with the following contents:

, 1
)2’
4

’

’

w N =
NG N

’

You can convert this into a binary file that SimpleDB can query as follows:

java -jar dist/simpledb.jar convert some_data_file.txt 3

Here, the argument “3” tells convert that the input has 3 columns.

The following code implements a simple selection query over this file. This code is equivalent to the SQL statement

SELECT * FROM some_data_file

package simpledb;
import java.io.*;

public class test {

public static void main(String[] argv) {

10

Database Systems, CS-UH 2214 Lab 1 - SimpleDB

// construct a 3-column table schema

Type types[] = new Typel[]{ Type. , Type. , Type. };
String names[] = new String[]{ "field@", "field1"”, "field2" };

TupleDesc descriptor = new TupleDesc(types, names);

// create the table, associate it with some_data_file.dat

// and tell the catalog about the schema of this table.

HeapFile tablel = new HeapFile(new File("”some_data_file.dat"”), descriptor);
Database. O. (tablel, "test");

// construct the query: we use a simple SegScan, which spoonfeeds
// tuples via its iterator.
TransactionId tid = new TransactionId();

SeqScan f = new SeqgScan(tid, tablel. 0);
try {
// and run it
f. O;
while (f. O)
Tuple tup = f. O;
System. . (tup);
3
f. O;
Database. 0. (tid);
} catch (Exception e) {
System. . ("Exception : " + e);
3

The table we create has three integer fields. To express this, we create a TupleDesc object and pass it an array of
Type objects, and optionally an array of String field names. Once we have created this TupleDesc, we initialize a
HeapFile object representing the table stored in some_data_file.dat. Once we have created the table, we add it to
the catalog. If this were a database server that was already running, we would have this catalog information loaded.
We need to load it explicitly to make this code self-contained.

Once we have finished initializing the database system, we create a query plan. Our plan consists only of the SeqScan
operator that scans the tuples from disk. In general, these operators are instantiated with references to the appro-
priate table (in the case of SeqScan) or child operator (in the case of e.g. Filter). The test program then repeatedly
calls hasNext and next on the SeqScan operator. As tuples are output from the SeqScan, they are printed out on
the command line.

We strongly recommend you try this out as a fun end-to-end test that will help you get experience writing your
own test programs for simpledb. You should create the file “test.java” in the src/simpledb directory with the code
above, and place the some_data_file.dat file in the top level directory. Then run:

ant

java -classpath dist/simpledb.jar simpledb.test

Note that ant compiles test. java and generates a new jarfile that contains it.

11

Database Systems, CS-UH 2214 Lab 1 - SimpleDB

4 Logistics

You must submit your code (see below) as well as a short (2 pages, maximum) writeup describing your approach.
This writeup should:

« Describe any design decisions you made. These may be minimal for Lab 1.
« Discuss and justify any changes you made to the APL
« Describe any missing or incomplete elements of your code.

« Describe how long you spent on the lab, and whether there was anything you found particularly difficult or
confusing.

4.1 Submission

You will package your entire project into a folder with the title: ‘Labl-netID1-netID2’. Zip this folder and submit
via Dropbox using this link.

https://bit.ly/db-fall-2025-1ab1

Only one student per group should submit and that student should always submit/resubmit to avoid multiple sub-
missions per group.

In each folder, please include a readme file that includes a comma separated list of each member’s full name.

We will not grade any submission that does not strictly follow the submission rules.

4.2 Collaboration

You can work on this lab alone or you can do so in pairs but no larger groups sizes.

4.3 Grading

75% of your grade will be based on whether or not your code passes the system test suite we will run over it. These
tests will be a superset of the tests we have provided. Before handing in your code, you should make sure it produces
no errors (passes all of the tests) from both ant test and ant systemtest.

Important: before testing, we will replace your build.xml and the entire contents of the test directory with our
version of these files. This means you cannot change the format of .dat files! You should also be careful changing
our APIs. You should test that your code compiles the unmodified tests.

In other words, we will replace the files mentioned above, compile it, and then grade it. It will look roughly like this:

[replace build.xml and test]

$ ant test
$ ant systemtest
[additional tests]

If any of these commands fail, we’ll be unhappy, and, therefore, so will your grade.

An additional 25% of your grade will be based on the quality of your writeup and our subjective evaluation of your
code.

12

https://bit.ly/db-fall-2025-lab1

	1 Overview
	2 Environment Setup
	2.1 Getting started
	2.2 Running end-to-end tests
	2.3 Creating dummy tables
	2.4 Working in IntelliJ IDEA
	2.4.1 Setting the Lab Up in Intellij IDEA
	2.4.2 Running Indivisual Unit and System Tests
	2.4.3 Running Ant Build Targets

	2.5 Working in Eclipse
	2.5.1 Setting the Lab Up in Eclipse
	2.5.2 Running Ant Build Targets
	2.5.3 Implementation hints
	2.5.4 Transactions, locking, and recovery

	3 SimpleDB Architecture and Implementation Guide
	3.1 The Database Class
	3.2 Fields and Tuples
	3.3 Catalog
	3.4 BufferPool
	3.5 HeapFile Access
	3.6 Operators
	3.7 A simple query

	4 Logistics
	4.1 Submission
	4.2 Collaboration
	4.3 Grading

