Transactions

SQL

SQL Client
Query Evaluation
Relational Operators

P —_——

Two users change the
same record at the same
time.

The power fails in the
middle of your update

s SQL Client
» 4
! Query Parsing & Optimization |
(3 s N)
! Query Evaluation w
Concu:rency L Relational Operators)
EID_OHJ[krOM) 6 Access Methods 'R
. OC anager 1 Files & Index Management
Transaction th) R R
Manager L 3 Buffer Pool Management |) ecovery
g ¥ & Logging

. Disk Space Management
Transaction — a sequence of one

or more operations that perform S W :
some higher-level function N — Y,

DBMS provide certain transaction guarantees (e.g.
ACID) that make the lives of programmers easy &

Transactions

ACID
Transactions

A sequence of multiple actions to be executed as an atomic unit

A transaction ends in one of 2 ways:
* Commit after completing all its actions. If committed, the DBMS
guarantees the update occurred!

* Abort (or be aborted by the DBMS) after executing some actions; A

transaction that didn't complete due to a system crash is treated as an
Abort

DBMS only sees a sequence of reads and writes devoid of
application logic
Focus of

Logging &

Atomicity: All actions in a transaction happen, or none happen. Recovery

Consistency: If the DB starts out consistent, it ends up consistent at the end of

the Xact! (The DBMS aborts transactions that violate any.ihtegrity Constraints)

lsolation: Execution of each Xact is isolated from that-of others Focus of

Concurrency
Dumbility: If a Xact commits, its effects persist. Control

Do we need
concurrency’?

More Throughput (transactions per second)

Increase processor/disk utilization

* Single core: one transaction uses the CPU while
another does 1O

* Multicore: scale throughput in the number of
Processors

Latency (response time per transaction)
* A transaction does not need to wait for another
unrelated transaction

What is the
worst that could
happen with
concurrency’?

The case of too many bank accounts!

User 1

User 2

BEGIN

BEGIN

INSERT INTO StudentAccounts
SELECT * FROM Accounts

WHERE occupation ==
‘student’;

DELETE Accounts
WHERE occupation ==
‘student’;

COMMIT

SELECT count(*)
FROM StudentAccounts;

SELECT count(*)
FROM Accounts;

COMMIT

Inconsistent Reads

What is the
worst that could
happen with
concurrency’?

The case of where did my money go!

User 1

User 2

BEGIN
DECLARE _bal numeric;

SELECT balance

FROM Accounts

INTO bal

WHERE account_id =111;

UPDATE Accounts
SET balance = bal +100;
WHERE account id=111;

COMMIT

BEGIN
DECLARE _bal numeric;

SELECT balance

FROM Accounts

INTO bal

WHERE account_id =111;

UPDATE Accounts
SET balance = bal + 300;
WHERE account_id=111;

COMMIT

Lost Updates

The case of “Money” you never had!

User 1 User 2

BEGIN BEGIN

UPDATE Accounts
SET balance = 1000000

What 1S the WHERE account_id=111;
worst that could SELECT balance
. FROM Accounts
happen Wlth WHERE account_id=111;
concurrency’? COMMIT
ABORT

Dirty Reads

Serializability

A transaction schedule shows the A serial schedule (i.e. no interleaving of
sequence of reads and writes of each operations) is the yardstick of “correct

transaction. concurrent executions!”
There can be multiple serial executions!
T1 T2 T1 T2
begin begin
What makes an read(A) read(A)
interleaving of write(A) write(A)
concurrent read(B) read(B)
executions write(B) write(B)
correct? commit commit
begin begin

read(A) read(A)

write(A) write(A)

read(B) read(B)

write(B) write(B)

commit commit

What makes
two schedules
equivalent?

* The schedules have the same transactions

* For each transaction, the sequence of actions
has the same order

* The before and after state of the DB is the
same across the schedules after their
execution

T1 T2 T1 T2
read(A) read(A)
write(A) write(A)
read(B) read(B)
write(B) write(B)

read(A) read(A)
write(A) write(A)
read(B) read(B)
write(B) write(B)

Both are serial

Maybe Equivalent

N 12

read(A)
write(A)
read(A)
write(A) If equivalent to
read(B) one of these serial
write(B) schedules, then it
IS serializable
What makes a fizg
schedules
serializable? T B
* read(A) read(A)
write(A) write(A)
* The schedule is equivalent to a serial read(B) read(B)
schedule. write(B) write(B)
read(A) read(A)
write(A) write(A)
read(B) read(B)
write(B) Maybe write(B)

Equivalent

A, B=1000
T1 transfers 100$ from A to B
T2 increases amounts in A and B by 10%

T1 T2 T1 T2
read(A) read(A)
A:=A-100 A:=A-100
write(A) write(A)
read(B) read(A)
B:=B+100 , A:=A*1.1
write(B) < equivalent > serializable A)
read(A) read(B)
A:=A*1.1 B:=B+100
write(A) write(B)
read(B) read(B)
B:=B*1.1 B:=B*1.1
write(B) write(B)
A =990; B=1210 A =990; B=1210

Serializability Example

T T2
read(A)
A:=A*1.1
write(A)
read(B)
B:=B*1.1
write(B)
read(A)
A:=A-100
write(A)
read(B)
B:=B+100
write(B)

A =1000; B=1200

Conflict Serializability

A, B=1000
T1 transfers 100$ from A to B
T2 increases amounts in A and B by 10%

T1 T2 T1 T2 T1 T2
read(A) read(A) read(A)
A:=A-100 A:=A-100 A:=A*"1.1
write(A) f Ye(A)
read(B) d(B)
8284100 We need a formal notion of equivalence that can be implemented 1., .
. without checking that the schedules left the database in the same
write(B) le(B)
state
read(A
A:=A"1 §)
write(A) write(B) write(A)
read(B) read(B) read(B)
B:=B"1.1 B:=B*1.1 B:=B+100
write(B) write(B) write(B)
A =990; B=1210 A = 990: B=1210 A = 1000; B=1200

Serializability

Two operations conflict if they:
. * Are by different transactions,
Conﬂ ICts * Are on the same object,
* At least one of them is a write.

The order of non-conflicting operations has no
effect on the final state of the database!

The case of “why did A not get

Th f th ishi Th f “Money"”
Iooeojjase or The vaniening ne\f eia::(d‘!) oney: yoo the st(\Jdent account open
& Interleaved Poneet
: T T2 T1 T2 T1 T2
Exe cution read(A) read(A) A:=100 A:=0
Anoma | |leS read(A) A:=A+1000,000 B:=100 B:=0
A:=A-1000 write(A) write(A)
write(A) '\‘ read(A) write(A)
read(A) A:=A-1,000,000 write(B)
write(A) write(B)
ABORT
Read-Write Conflict Write-Read Conflict Write-Write Conflict
Non-repeatable Reads Dirty Reads Overwriting Uncommitted Data

/ Lost Updates

Conflict Equivalent Schedules §; =, S, if:
* They involve the same actions of the same transactions, and
* Every pair of conflicting actions is ordered the same way
Conflict Serializable

S1 1s conflict serializable if §; =, S, and S, Is a serial schedule
conflict serializable = serializable

Sy is conflict serializable if
You can transform S, into a serial schedule S, by swapping
consecutive non-conflicting operations of different transactions

Conflict Serializability

Conflict Equivalent Schedules §; =, S, if:
* They involve the same actions of the same transactions, and
* Every pair of conflicting actions is ordered the same way
Conflict Serializable

S1 1s conflict serializable if §; =, S, and S, Is a serial schedule
conflict serializable = serializable

Sy is conflict serializable if
You can transform S, into a serial schedule S, by swapping
consecutive non-conflicting operations of different transactions

Conflict Serializability

Conflict Equivalent Schedules §; =, S, if:
* They involve the same actions of the same transactions, and
* Every pair of conflicting actions is ordered the same way
Conflict Serializable

S1 1s conflict serializable if §; =, S, and S, Is a serial schedule
conflict serializable = serializable

Sy is conflict serializable if
You can transform S, into a serial schedule S, by swapping
consecutive non-conflicting operations of different transactions

Conflict Serializability

Conflict Equivalent Schedules §; =, S, if:
* They involve the same actions of the same transactions, and
* Every pair of conflicting actions is ordered the same way
Conflict Serializable

S1 1s conflict serializable if §; =, S, and S, Is a serial schedule
conflict serializable = serializable

Sy is conflict serializable if
You can transform S, into a serial schedule S, by swapping
consecutive non-conflicting operations of different transactions

Conflict Serializability

Conflict Equivalent Schedules §; =, S, if:
* They involve the same actions of the same transactions, and
* Every pair of conflicting actions is ordered the same way
Conflict Serializable

S1 1s conflict serializable if §; =, S, and S, Is a serial schedule
conflict serializable = serializable

Sy is conflict serializable if
You can transform S, into a serial schedule S, by swapping
consecutive non-conflicting operations of different transactions

T2 RA) WA REB) WEB)
SERIAL!

Conflict Serializability

S, Is conflict serializable if
You can transform S; into a serial schedule S, by swapping
consecutive non-conflicting operations of different transactions

NOT CONFLICT SERIALIZABLE!

This definition is operational but does not give us the most
efficient test of conflict serializability. We need a faster
algorithm!

Conflict Serializability

Conflict Dependency Graphs

Dependency Graph G (S) Each transaction Tj is a node
An edge from T; to T; exists if:

* An operation 0; of T; conflicts with an operation 0; of T; and
* 0; appears earlier in the schedule than 0;

S is conflict serializable iff G(S) is acyclic

Conflict Serializable
T1 | RAL,. W(A)s=—r__ RB) W(B)eo-__
()'“"@.:ﬁ ;‘~> ()“~~~(-.)-:ﬁ%8“‘~~> No Cycles
T2 (AP W(A) >W(B) CONFLICT SERIALIZABLE!
T RA) ? WA Cycle!
T2 RAT* W(A) NOT CONFLICT
SERIALIZABLE!

Conflict Serializability

Two-Phase Locking (2PL)

Kq Assumes conflicts will occur;

Pessimistic . .
requires transactions to

Half Concurrency
lock the it th 1l
Empty Control Protocol oci e ftems they Wi
access before access!

Rules:
» Xact gets S (shared) lock before reading, and an X (exclusive)

2 P I_ — CO ﬂﬂ | Ct lock before writing.
. . ol » Xact cannot get new locks after releasing any lock
Serializability

Lock S X Multiple transactions can get a

Compatibility g X shared lock on one object but

Matrix only one can get an “exclusive”
XX X lock

#locks Lock Point

held

Release
phase

/-\Cquisition
phase

_>
time

2 PL — CO nﬂ ICt At lock point, transaction has everything it needs.
S €ria l 1Za b | | Ity Conflicting concurrent transactions either:

) * Started release before lock point

Wh)/ * Blocked and waiting for release of some locks

What is the equivalent serial schedule?

* Two conflicting transactions are ordered by the lock point

* The order of the lock points is the equivalent serial
schedule

2PL
Issues

Cascading
Aborts

Lock
Management

Deadlocks

T1 |RA) WA ABORT
T2 R(A) W(A)

Rolling back Xact T'| rolls back T2!

* Who issues and manages locks on
items in the database!?
* What items do we lock?

T1 has alock on A:T2 has a lock on B
T1 wants a lock on B: T2 wants a lock on A

Strict 2PL

The Lock Manager
Multi-Lock Granularity

Deadlock Avoidance,
Prevention, Detection +
Resolution

Strict 2PL

Strict 2PL

ﬁ

Conflict
Serializability
|

No Cascading
Aborts

#locks i Lock Point
held |
Acquisition Release all locks
phase | at Xact end
time

Strict 2PL = 2PL + release all locks when:
* Transaction committed (all writes are now durable)

* Transaction aborted (all writes undone)

— No cascading aborts

>

Conflicting transactions blocked and waiting for locks release

— Conflict Serializability

2PL & Strict 2PL in Action

Lock, Access, & Release

A has 100%, B has 50%

T1 transfers 10$ from
account A to B.

T2 sums the amounts
in A and B.

What does T2 output?

T1
Lock-X(A)
Read(A)

A :=A-10
Write(A)
Unlock(A)

Lock-X(B)

Read(B)

B:=B+10

Write(B)
Unlock(B)

12

Lock-S(A)

Read(A)
Unlock(A)
Lock-S(B)

Read(B)
Unlock(B)

Print (A+B)

A: 100

A: 90

B: 50

140
B: 50

2PL

A has 100%, B has 50%

T1 transfers 10$ from
account A to B.

T2 sums the amounts
in A and B.

What does T2 output?

T1
Lock-X(A)
Read(A)
A: =A-10
Write(A)

Lock-X(B)
Unlock(A)

Read(B)

B:=B+10

Write(B)
Unlock(B)

12

Lock-S(A)

Read(A)
Lock-S(B)

Unlock(A)
Read(B)
Unlock(B)

Print (A+B)

A: 100

A: 90
B: 50

B: 60

150

Strict 2PL T1 T2

Lock-X(A)
A: 100
A has 1008, B has 50$ ReadiA)
Lock-S(A)
A: = A-10
T1 transfers 10$ from Write(A)
account A to B. Lock-X(B)
Read(B) B: 50
B:=B +10
T2 sums the amounts |
in A and B. Write(B)
Unlock(A)
Unlock(B)
What does T2 output? Read(A) A: 90
Lock-S(B)
Read(B) B: 60
Print (A+B)
Unlock(A)

Unlock(B) 150

2PL Schedules

-
All Schedules

(

Serializable View Serializable
Conflict Serializable
Avoid
Cascading .
Aborts [Serial]

Lock Manager

Lock Request/Upgrade

Does requesting Xact conflict with Xacts in granted set?

Move first Xact (and all non-conflicting Xacts) from wait

Lock-S(A) * NO:Put into “granted set” and let proceed
Unlock(B) Lock Manager * YES:Put to sleep in wait queue
Unlock(M) Unlock

| Maintains

i Hash table

. queue Iif any to granted set and wake them up
ltem Granted Set Mode Wait Queue

A {T1, T2} S T3 «T7 «T6

B (T4) X T8 « T5 \

(FIFO/priority given to upgraders)

How Do We Lock Data?

Lock Manager State

ltemm Granted Set Mode Wait Queue
A (T1) X
T1 T2
ltemm Granted Set Mode Wait Queue
Lock-x(d) y A 1) X
Lock-SB)" B {T2) S What if TI, T2
touch millions
Read(B) of records in a
' table?
LOCK-S(A) ltemm Granted Set Mode Wait Queue
“““ > A {T1} X T2(S)
Read(A) B {12} S
A: = A-50
Write(A) ltem Granted Set Mode Wait Queue How do we
————————————— » A {T1} X T2(S) handle
Lock-X(B) - deadlocks?

B {T2} S T1(X)

Lock Granularity

database coarse Smaller # of locks to

Lock-S(A) 4 manage: Less overhead;
Unlock(B) Lock Manager but less concurrency
Unlock(M) i tables
| Maintains
| Hash table tradeoff
i . pages
ltem Granted Set Mode Wait Queue
A {Tl: 12] S . ¢ 12 « 17 «7T6 Fine-grained locking of
A OCK Manager Maintains a 15 v v resources means high
lock/ for eachitem locked by ° tuples fine degree of concurrency
a transaction but lock per tuple: Lots of

overhead.

Multiple Lock Granularity

 Establish a hierarchy of DB objects. [Problem J

* Allow Xact to lodl de in the t licitly (e.g.
pagev;/ actto lock a node in the tree explicity (e.g.a Can | immediately lock a table if it has

no locks?
No, must check lower levels for locks!

* This implicitly locks all the node's descendants in the
same mode (e.g. tuples in the page).

[Solution: Intention Locks]

Intent-to-share (IS) @ [Database D1 } To get S or X lock on an object (e.g. a tuple),
Xact must have proper intent locks on all its
/\ ancestors in the granularity hierarchy (e.g.
Intent-to-share (IS) @ [Table B } [Table R2 } page, table and database).

3 new lock modes:

* IS:Intent to get S lock(s) at finer granularity.
Page A Share (S Page B Page * X Intent to get X lock(s) at finer granularity.

'/ i i i i \' o SIX:Like S & IX at the same time.

Multiple Locking Granularity

Request

» Xact starts from the root of the hierarchy.

* TJogetSorlSlock onanode, must hold IS or IX on parent
node.

* TJo get X or X or SIX on a node, must hold IX or SIX on parent
node.

2PL + Multiple i
. . elease
I_OCl(l N g G Fanu | a r|ty * Release locks in bottom-up order.

2PL and lock compatibility matrix rules enforced

How to know if two locks are

o Lock S IX S SIX
compatible: Compatibility
r Natr IS
atrix
Page

(Tuple 1 @ S | 1S S
(Tuple2 @ X | B1X SIX

< X X

< X

< X X X
X X X X X |X

Waiting for A

Granted Set Mode Wait Queue 1 Mutual Exclus
. Mutual Exclusion
A {T1} X T2(S) 2. Hold and wait!
B {T2} S T1(X) 3. No Preemption
4. Gircular wait
Waiting for B
Granted Set Mode Wait Queue Bad Mol tation! Walt "
| Waiting on myse
A (T2} S T3(X) <T4(X) <T2(X) ad Impiememtation: ¥vatting on my
Granted Set Mode Wait Queue Multiple lock upgrades
A {T1,T2) S T2(X) «T1(X) «T3(X) « T4(X)

How do deadlocks arise?

Eventually the application will abort the We could do better!

ing!
Do nothing long-running transaction and try again!
| | Observe the current Xacts, kill ones that What if we have a I8M DB2
Timeout & Kill have been running for a while long—running one? Distributed DBMS
Xact Ty holds a lock Unnecessar
| | N U
| Mot SRS Wait-Die:T; > T; , T; waits for Ty; else T; dies (aborts) termination to prevent
Prevention — —2Hotdarrdratt- * Wound-Wait: T; > Ty, T} is wounded (aborts); else T; a rare occurrence!
3. No Preemption walits
4. Circular wait \ Resource Ordering How can a DBMS force Advice found in
« Can only lock DB objects in a an order on how many Manuals
certain order tuples are locked?
Detectign & Maintain gwaits—for—graph, periodically look for cycles, Used in MySQL, Post gres, Oracle, ...
Resolution abort a victim to break they cycle.

Dealing with Deadlocks

™| SA) SD
T2 X(B)
13
T4
Granted Set Mode Wait Queue
A {T1} S
D {T1} S
B {T2} X

Deadlock

Detection in Action

® @

& ©

T1 | S(A) SD) S(B)
T2 X(B)
13
T4
Q Wait for B @
Granted Set Mode Wait Queue
A {T1} S
D {T1} S
B {T2} X T1(S)
C

Deadlock Detection in Action

T1 | S(A) SD) S(B)
T2 X(B)
13 S(D) S(O)
T4
Q Wait for B @
Granted Set Mode Wait Queue
A {T1} S
D {T1} S
B {T2} X T1(S)
C {T3} S

Deadlock Detection in Action

T | S(A) S(D) S(B)
12 X(B) X(C)
13 S(D) S(C)
T4 X(B)
Wait for B
()
Granted Set Mode Wait Queue Wait for C
A {T1) S
D {T1,T3} S
B {T2) X T1(S) «T4(X)
C {T3) S T2(X)

Deadlock Detection in Action

™| SA) SD S(B)
12 X(B) X(C)
13 S(D) S(C) X(A)
T4 X(B)
Wait for B
Granted Set Mode Wait Queue
A {T1} S T3(X)
D {T1,T3} S
B {T2} X T1(S) «T4(X)
C {T3} S T2(X)

Deadlock!

Deadlock Detection in Action

