
Transactions

Disk Space Management

Buffer Pool Management

Access Methods
Files & Index Management

Query Parsing & Optimization

Query Evaluation
Relational Operators

SQL Client

SQL

Disk Space Management

Buffer Pool Management

Access Methods
Files & Index Management

Query Parsing & Optimization

Query Evaluation
Relational Operators

SQL Client

SQL SQL
SQL SQL

SQL

SQL
SQLSQL

SQL SQL

Concurrency
Control
(Lock Manager)

Recovery
& Logging

Two users change the
same record at the same
time.

The power fails in the
middle of your update

Transaction
Manager

Transaction – a sequence of one
or more operations that perform
some higher-level function

DBMS provide certain transaction guarantees (e.g.
ACID) that make the lives of programmers easy !

Transactions

A sequence of multiple actions to be executed as an atomic unit

DBMS only sees a sequence of reads and writes devoid of
application logic

Atomicity: All actions in a transaction happen, or none happen.

Consistency: If the DB starts out consistent, it ends up consistent at the end of
the Xact! (The DBMS aborts transactions that violate any Integrity Constraints)

Isolation: Execution of each Xact is isolated from that of others

Durability: If a Xact commits, its effects persist.

ACID
Transactions

Focus of
Concurrency
Control

Focus of
Logging &
Recovery

A transaction ends in one of 2 ways:
• Commit after completing all its actions. If committed, the DBMS

guarantees the update occurred!
• Abort (or be aborted by the DBMS) after executing some actions; A

transaction that didn’t complete due to a system crash is treated as an
Abort

Do we need
concurrency?

More Throughput (transactions per second)
Increase processor/disk utilization
• Single core: one transaction uses the CPU while

another does IO
• Multicore: scale throughput in the number of

processors

Latency (response time per transaction)
• A transaction does not need to wait for another

unrelated transaction

What is the
worst that could
happen with
concurrency?

User 1 User 2
BEGIN BEGIN
INSERT INTO StudentAccounts
SELECT * FROM Accounts
WHERE occupation ==
‘student’;

SELECT count(*)
FROM StudentAccounts;
SELECT count(*)
FROM Accounts;

DELETE Accounts
WHERE occupation ==
‘student’;

COMMIT COMMIT

The case of too many bank accounts!

Inconsistent Reads

What is the
worst that could
happen with
concurrency?

User 1 User 2
BEGIN BEGIN
DECLARE _bal numeric;

SELECT balance
FROM Accounts
INTO _bal
WHERE account_id =111;

DECLARE _bal numeric;

SELECT balance
FROM Accounts
INTO _bal
WHERE account_id =111;

UPDATE Accounts
SET balance = _bal +100;
WHERE account_id=111;

UPDATE Accounts
SET balance = _bal + 300;
WHERE account_id=111;

COMMIT COMMIT

The case of where did my money go!

Lost Updates

What is the
worst that could
happen with
concurrency?

User 1 User 2
BEGIN BEGIN
UPDATE Accounts
SET balance = 1000000
WHERE account_id=111;

SELECT balance
FROM Accounts
WHERE account_id=111;

COMMIT

ABORT

The case of “Money” you never had!

Dirty Reads

Serializability

What makes an
interleaving of
concurrent
executions
correct?

T1 T2
begin
read(A)
write(A)
read(B)
write(B)
commit

begin
read(A)
write(A)
read(B)
write(B)
commit

A transaction schedule shows the
sequence of reads and writes of each
transaction.

A serial schedule (i.e. no interleaving of
operations) is the yardstick of “correct
concurrent executions!”
There can be multiple serial executions!

T1 T2
begin
read(A)
write(A)
read(B)
write(B)
commit

begin
read(A)
write(A)
read(B)
write(B)
commit

What makes
two schedules
equivalent?

T1 T2
read(A)
write(A)
read(B)
write(B)

read(A)
write(A)
read(B)
write(B)

T1 T2
read(A)
write(A)
read(B)
write(B)

read(A)
write(A)
read(B)
write(B)• The schedules have the same transactions

• For each transaction, the sequence of actions
has the same order

• The before and after state of the DB is the
same across the schedules after their
execution

Both are serial
Maybe Equivalent

What makes a
schedules
serializable? T1 T2

read(A)
write(A)
read(B)
write(B)

read(A)
write(A)
read(B)
write(B)

T1 T2
read(A)
write(A)
read(B)
write(B)

read(A)
write(A)
read(B)
write(B)

• The schedule is equivalent to a serial
schedule.

Maybe
Equivalent

T1 T2
read(A)
write(A)

read(A)
write(A)

read(B)
write(B)

read(B)
write(B)

If equivalent to
one of these serial
schedules, then it
is serializable

Serializability Example

T1 T2
read(A)

A:=A-100
write(A)
read(B)

B:=B+100
write(B)

read(A)
A:=A*1.1
write(A)
read(B)

B:=B*1.1
write(B)

A, B = 1000
T1 transfers 100$ from A to B
T2 increases amounts in A and B by 10%

A = 990; B=1210

T1 T2
read(A)

A:=A*1.1
write(A)
read(B)

B:=B*1.1
write(B)

read(A)
A:=A-100
write(A)
read(B)

B:=B+100
write(B)

A = 1000; B=1200

T1 T2
read(A)

A:=A-100
write(A)

read(A)
A:=A*1.1
write(A)

read(B)
B:=B+100

write(B)
read(B)

B:=B*1.1
write(B)

equivalent serializable

A = 990; B=1210

Conflict Serializability

Serializability

T1 T2
read(A)

A:=A-100
write(A)
read(B)

B:=B+100
write(B)

read(A)
A:=A*1.1
write(A)
read(B)

B:=B*1.1
write(B)

A, B = 1000
T1 transfers 100$ from A to B
T2 increases amounts in A and B by 10%

A = 990; B=1210

T1 T2
read(A)

A:=A*1.1
write(A)
read(B)

B:=B*1.1
write(B)

read(A)
A:=A-100
write(A)
read(B)

B:=B+100
write(B)

A = 1000; B=1200

T1 T2
read(A)

A:=A-100
write(A)

read(A)
A:=A*1.1
write(A)

read(B)
B:=B+100

write(B)
read(B)

B:=B*1.1
write(B)

equivalent serializable

A = 990; B=1210

We need a formal notion of equivalence that can be implemented
without checking that the schedules left the database in the same
state

& Interleaved
Execution
Anomalies

T1 T2
read(A)

read(A)
A:=A-1000

write(A)
read(A)

The case of the vanishing
1000$

Two operations conflict if they:
• Are by different transactions,
• Are on the same object,
• At least one of them is a write.

T1 T2
read(A)

A:=A+1000,000
write(A)

read(A)
A:=A-1,000,000

write(A)
ABORT

T1 T2
A:=100
B:=100

A:=0
B:=0

write(A)
write(A)
write(B)

write(B)

Read-Write Conflict Write-Read Conflict

Non-repeatable Reads Dirty Reads

Write-Write Conflict

Overwriting Uncommitted Data
/ Lost Updates

The case of ”Money” you
never had!

The case of “why did A not get
the student account open
bonus!”

Conflicts
The order of non-conflicting operations has no
effect on the final state of the database!

Conflict Serializability

Conflict Equivalent

Conflict Serializable

Schedules !! ≡" !# if:
• They involve the same actions of the same transactions, and
• Every pair of conflicting actions is ordered the same way

!! is conflict serializable if !! ≡" !# and !# is a serial schedule
conflict serializable ⇒ serializable

!! is conflict serializable if
You can transform S! into a serial schedule S# by swapping
consecutive non-conflicting operations of different transactions

T1 R (A) W(A) R(B) W(B)
T2 R(A) W(A) R(B) W(B)

Conflict Serializability

Conflict Equivalent

Conflict Serializable

Schedules !! ≡" !# if:
• They involve the same actions of the same transactions, and
• Every pair of conflicting actions is ordered the same way

!! is conflict serializable if !! ≡" !# and !# is a serial schedule
conflict serializable ⇒ serializable

!! is conflict serializable if
You can transform S! into a serial schedule S# by swapping
consecutive non-conflicting operations of different transactions

T1 R (A) W(A) R(B) W(B)
T2 R(A) W(A) R(B) W(B)

Swap!

Conflict Serializability

Conflict Equivalent

Conflict Serializable

Schedules !! ≡" !# if:
• They involve the same actions of the same transactions, and
• Every pair of conflicting actions is ordered the same way

!! is conflict serializable if !! ≡" !# and !# is a serial schedule
conflict serializable ⇒ serializable

!! is conflict serializable if
You can transform S! into a serial schedule S# by swapping
consecutive non-conflicting operations of different transactions

T1 R (A) W(A) R(B) W(B)
T2 R(A) W(A) R(B) W(B)

Swap!

Conflict Serializability

Conflict Equivalent

Conflict Serializable

Schedules !! ≡" !# if:
• They involve the same actions of the same transactions, and
• Every pair of conflicting actions is ordered the same way

!! is conflict serializable if !! ≡" !# and !# is a serial schedule
conflict serializable ⇒ serializable

!! is conflict serializable if
You can transform S! into a serial schedule S# by swapping
consecutive non-conflicting operations of different transactions

T1 R (A) W(A) R(B) W(B)
T2 R(A) W(A) R(B) W(B)

Swap!

Conflict Serializability

Conflict Equivalent

Conflict Serializable

Schedules !! ≡" !# if:
• They involve the same actions of the same transactions, and
• Every pair of conflicting actions is ordered the same way

!! is conflict serializable if !! ≡" !# and !# is a serial schedule
conflict serializable ⇒ serializable

!! is conflict serializable if
You can transform S! into a serial schedule S# by swapping
consecutive non-conflicting operations of different transactions

T1 R (A) W(A) R(B) W(B)
T2 R(A) W(A) R(B) W(B)

SERIAL!

Conflict Serializability

T1 R (A) W(A)
T2 R(A) W(A)

NOT CONFLICT SERIALIZABLE!

!! is conflict serializable if
You can transform S! into a serial schedule S# by swapping
consecutive non-conflicting operations of different transactions

This definition is operational but does not give us the most
efficient test of conflict serializability. We need a faster

algorithm!

Conflict Dependency Graphs

Conflict Serializability

Conflict Serializable

Each transaction '$ is a node
An edge from '$ to '$ exists if:
• An operation ($ of '$ conflicts with an operation (% of '% and
• ($ appears earlier in the schedule than (%
! is conflict serializable iff) ! is acyclic

No Cycles
CONFLICT SERIALIZABLE!

Dependency Graph)(!)

T1 T2
T1 R (A) W(A) R(B) W(B)
T2 R(A) W(A) R(B) W(B)

T1 R (A) W(A)
T2 R(A) W(A) T1 T2

Cycle!
NOT CONFLICT
SERIALIZABLE!

Two-Phase Locking (2PL)

2PL → Conflict
Serializability

Half
Empty

Pessimistic
Concurrency
Control Protocol

Assumes conflicts will occur,
requires transactions to
lock the items they will
access before access!

Rules:
• Xact gets S (shared) lock before reading, and an X (exclusive)

lock before writing.
• Xact cannot get new locks after releasing any lock

S X
S ✓ ✗
X ✗ ✗

Lock
Compatibility
Matrix

Multiple transactions can get a
shared lock on one object but
only one can get an “exclusive”
lock

2PL → Conflict
Serializability

Release
phase

Acquisition
phase

Lock Point

time

#locks
held

At lock point, transaction has everything it needs.

Conflicting concurrent transactions either:
• Started release before lock point
• Blocked and waiting for release of some locks

What is the equivalent serial schedule?
• Two conflicting transactions are ordered by the lock point
• The order of the lock points is the equivalent serial

schedule

Why?

2PL
Issues

Cascading
Aborts

Lock
Management

Deadlocks

T1 R(A) W(A) ABORT
T2 R(A) W(A)

Rolling back Xact T1 rolls back T2!

• Who issues and manages locks on
items in the database?

• What items do we lock?

T1 has a lock on A; T2 has a lock on B
T1 wants a lock on B; T2 wants a lock on A

Strict 2PL

The Lock Manager

Multi-Lock Granularity

Deadlock Avoidance,
Prevention, Detection +
Resolution

Strict 2PL

Strict 2PL
→
Conflict
Serializability
+
No Cascading
Aborts

Release all locks
at Xact end

Acquisition
phase

Lock Point

time

#locks
held

Strict 2PL = 2PL + release all locks when:
• Transaction committed (all writes are now durable)
• Transaction aborted (all writes undone)

→ No cascading aborts

Conflicting transactions blocked and waiting for locks release
→ Conflict Serializability

2PL & Strict 2PL in Action

Lock, Access, & Release T1 T2
Lock-X(A)
Read(A)

Lock-S(A)
A := A-10
Write(A)

Unlock(A)
Read(A)

Unlock(A)
Lock-S(B)

Lock-X(B)
Read(B)

Unlock(B)
Print (A+B)

Read(B)
B := B+10

Write(B)
Unlock(B)

T1 transfers 10$ from
account A to B.

T2 sums the amounts
in A and B.

What does T2 output?

A has 100$, B has 50$
A: 100

A: 90

B: 50

140
B: 50

2PL T1 T2
Lock-X(A)
Read(A) Lock-S(A)

A: = A-10
Write(A)

Lock-X(B)
Unlock(A)

Read(A)
Lock-S(B)

Read(B)
B := B +10

Write(B)
Unlock(B)

Unlock(A)
Read(B)

Unlock(B)
Print (A+B)

T1 transfers 10$ from
account A to B.

T2 sums the amounts
in A and B.

What does T2 output?

A has 100$, B has 50$
A: 100

A: 90
B: 50

150

B: 60

Strict 2PL T1 T2
Lock-X(A)
Read(A)

Lock-S(A)
A: = A-10
Write(A)

Lock-X(B)
Read(B)

B := B +10
Write(B)

Unlock(A)
Unlock(B)

Read(A)
Lock-S(B)
Read(B)

Print (A+B)
Unlock(A)
Unlock(B)

T1 transfers 10$ from
account A to B.

T2 sums the amounts
in A and B.

What does T2 output?

A has 100$, B has 50$
A: 100

B: 50

A: 90

150

B: 60

2PL Schedules

Serializable

Avoid
Cascading
Aborts Serial

View Serializable

Conflict Serializable

All Schedules

Lock Manager

How Do We Lock Data?

Lock Manager

Item Granted Set Mode Wait Queue
A {T1, T2} S T3 ← T7 ← T6
B {T4} X T8 ← T5

…

Lock-S(A)
Unlock(B)
Unlock(M)

Maintains
Hash table

Lock Request/Upgrade

Does requesting Xact conflict with Xacts in granted set?
• NO: Put into “granted set” and let proceed
• YES: Put to sleep in wait queue

Unlock

Move first Xact (and all non-conflicting Xacts) from wait
queue if any to granted set and wake them up

(FIFO/priority given to upgraders)

T1 T2

Lock-X(A)

Lock-S(B)

Read(B)

Lock-S(A)

Read(A)

A: = A-50

Write(A)

Lock-X(B)

Lock Manager State Item Granted Set Mode Wait Queue
A {T1} X

Item Granted Set Mode Wait Queue
A {T1} X
B {T2} S

Item Granted Set Mode Wait Queue
A {T1} X T2(S)
B {T2} S

Item Granted Set Mode Wait Queue
A {T1} X T2(S)
B {T2} S T1(X)

How do we
handle
deadlocks?

What if T1, T2
touch millions
of records in a
table?

Lock Granularity

Lock Granularity

Lock Manager

Item Granted Set Mode Wait Queue
A {T1, T2} S T3 ← T7 ← T6
B {T4} X T8 ← T5

…

Lock-S(A)
Unlock(B)
Unlock(M)

Maintains
Hash table

Lock manager maintains a
lock for each item locked by
a transaction

database

tables

pages

tuples

coarse

fine

Smaller # of locks to
manage: Less overhead;
but less concurrency

Fine-grained locking of
resources means high
degree of concurrency
but lock per tuple: Lots of
overhead.

tradeoff

Multiple

Multiple Locking Granularity

Database D1

Table R1 Table R2

Page A Page B Page C

t1A tnA t1B tmB t1C tpC

• Establish a hierarchy of DB objects.
• Allow Xact to lock a node in the tree explicitly (e.g. a

page)
• This implicitly locks all the node’s descendants in the

same mode (e.g. tuples in the page).

To get S or X lock on an object (e.g. a tuple),
Xact must have proper intent locks on all its
ancestors in the granularity hierarchy (e.g.
page, table and database).

3 new lock modes:
• IS: Intent to get S lock(s) at finer granularity.
• IX: Intent to get X lock(s) at finer granularity.
• SIX: Like S & IX at the same time.

Can I immediately lock a table if it has
no locks?
No, must check lower levels for locks!

Problem

Solution: Intention Locks

Intent-to-share (IS)

Intent-to-share (IS)

Share (S)

2PL + Multiple
Locking Granularity

IS IX S SIX X
IS ✓ ✓ ✓ ✓ ✗
IX ✓ ✓ ✗ ✗ ✗
S ✓ ✗ ✓ ✗ ✗

SIX ✓ ✗ ✗ ✗ ✗
X ✗ ✗ ✗ ✗ ✗

Lock
Compatibility
Matrix

Request
• Xact starts from the root of the hierarchy.
• To get S or IS lock on a node, must hold IS or IX on parent

node.
• To get X or IX or SIX on a node, must hold IX or SIX on parent

node.

Release
• Release locks in bottom-up order.

2PL and lock compatibility matrix rules enforced

Page

Tuple 1

Tuple 2

S

X

IS

IX

How to know if two locks are
compatible?

Deadlock

How do deadlocks arise?

Granted Set Mode Wait Queue
A {T1} X T2(S)
B {T2} S T1(X)

Granted Set Mode Wait Queue
A {T2} S T3(X) ←T4(X) ←T2(X)

Granted Set Mode Wait Queue
A {T1, T2} S T2(X) ←T1(X) ←T3(X)← T4(X)

T1 T2

Waiting for A

Waiting for B

2. Hold and wait!
1. Mutual Exclusion

3. No Preemption
4. Circular wait

Bad Implementation! Waiting on myself

Multiple lock upgrades

Dealing with Deadlocks

Prevention

Detection &
Resolution

Do nothing!

Resource Ordering
• Can only lock DB objects in a

certain order

Timeout & Kill

2. Hold and wait!
1. Mutual Exclusion

3. No Preemption
4. Circular wait

Xact '& holds a lock
• Wait-Die: '$ > '& , '$ waits for '& ; else '$ dies (aborts)
• Wound-Wait: '$ > '& , '& is wounded (aborts); else '$

waits

Eventually the application will abort the
long-running transaction and try again!

Observe the current Xacts, kill ones that
have been running for a while

We could do better!

How can a DBMS force
an order on how
tuples are locked?

Unnecessary
termination to prevent
a rare occurrence!

Maintain a waits-for-graph, periodically look for cycles,
abort a victim to break they cycle.

Used in MySQL, Postgres, Oracle, …

What if we have a
long-running one?

IBM DB2
Distributed DBMS

Advice found in
many manuals

Deadlock Detection in Action

T1 T2

T1 S (A) S(D)
T2 X(B)
T3
T4

T3T4

Granted Set Mode Wait Queue
A {T1} S
D {T1} S
B {T2} X

Deadlock Detection in Action

T1 T2
Wait for B

T1 S (A) S(D) S(B)
T2 X(B)
T3
T4

T3T4

Granted Set Mode Wait Queue
A {T1} S
D {T1} S
B {T2} X T1(S)
C

Deadlock Detection in Action

T1 T2
Wait for B

T1 S (A) S(D) S(B)
T2 X(B)
T3 S(D) S(C)
T4

T3T4

Granted Set Mode Wait Queue
A {T1} S
D {T1} S
B {T2} X T1(S)
C {T3} S

Deadlock Detection in Action

T1 T2
Wait for B

T1 S (A) S(D) S(B)
T2 X(B) X(C)
T3 S(D) S(C)
T4 X(B)

T3T4

Wait for C

Wait
for B

Granted Set Mode Wait Queue
A {T1} S
D {T1,T3} S
B {T2} X T1(S)←T4(X)
C {T3} S T2(X)

Deadlock Detection in Action

T1 T2
Wait for B

T1 S (A) S(D) S(B)
T2 X(B) X(C)
T3 S(D) S(C) X(A)
T4 X(B)

T3T4

Wait for C

Wait
for B

Wait
for A

Granted Set Mode Wait Queue
A {T1} S T3(X)
D {T1,T3} S
B {T2} X T1(S)←T4(X)
C {T3} S T2(X)

Deadlock!

