
Toward Network Data Independence

Joseph M. Hellerstein

EECS Computer Science Division, UC Berkeley Intel Research, Berkeley

Abstract

A number of researchers have become inter-
ested in the design of global-scale networked
systems and applications. Our thesis here is that
the database community’s principles and tech-
nologies have an important role to play in the
design of these systems. The point of depar-
ture is at the roots of database research: we
generalize Codd’s notion of data independence
to physical environments beyond storage sys-
tems. We note analogies between the develop-
ment of database indexes and the new genera-
tion of structured peer-to-peer networks. We il-
lustrate the emergence of data independence in
networks by surveying a number of recent net-
work facilities and applications, seen through
a database lens. We present a sampling of
database query processing techniques that can
contribute in this arena, and discuss methods for
adoption of these technologies.

1 Introduction
A number of research communities are now investigating
the design of global-scale networked systems made up of
a very large, relatively volatile mix of participating com-
pute resources. This work falls under various rubrics,
including peer-to-peer (p2p) systems, overlay networks,
and grid computing.

These efforts have strong echoes of the relational
database revolution of the early 1970’s, as we describe
below. We believe that the database research commu-
nity should be interested in this research agenda, and
well-positioned to make fundamental contributions. The
research is moving very quickly, and some key build-
ing blocks are emerging. We believe that collaborations
across areas like databases, networking, and distributed
algorithms could help shape a new generation of impor-
tant technologies that could eventually move into – or
become – the core of the Internet.

The relevance of database technology in this arena
can be seen by viewing recent developments in tradi-
tional database terms. We survey a number of related
efforts in both network applications and network infras-
tructure through a “database lens”, and we highlight

some database technologies that we are investigating in
these contexts.

2 Data Independence Redux
The success of modern database systems is due in large
part to Codd’s notion ofdata independence. In tra-
ditional terms, data independence is the decoupling of
a database system’s application-level interface from its
data organization. Data independence permits changes
to be made to the layout of data (file organizations and
indexes) without any modification to applications that ac-
cess that data.1

The concept of data independence and its instantia-
tion in the relational model has been heraled as being “as
clear a paradigm shift as we can hope to find in computer
science” [21], and earned Codd his Turing award. Yet
the message of data independence has had limited im-
pact outside the database community. We suspect that
data independence – properly generalized – has a major
role to play in the design of a new class of networks and
networked systems.

2.1 Generalized Data Independence

A subtle but general issue of timescales underlies data
independence. This discussion is not explicit in classi-
cal treatments of the topic, but is the key to translating
the concept outside of databases proper. At base, data in-
dependence is about relativerates of changeacross inter-
faces, and the software engineering benefits of separating
components that change at different rates.

In particular, when data layouts and device config-
urations change much more frequently than application
logic, then it becomes worthwhile to build a layer of in-
termediating software that automatically adapts to and
masks these changes from the applications above. As a
mnemonic, we define the following:

1When we speak of data independence in this paper, we focus on
what is often calledphysicaldata independence, and which was the fo-
cus of Codd’s landmark paper [7].Logicaldata independence refers to
the ability to change the logical schema of the database, while preserv-
ing the applications’ schemata via views. Logical independence was a
slightly later development [8]. It is also not quite the “home run” that
physical independence is; the impossibility of general updatable views
prevents the full realization of logical independence.

Proposition 1 (Data Independence Inequality)Data
independence is beneficial iff

d(environment)/dt � d(applications)/dt

i.e., the rate of change in the computing environment over
time (devices, physical data placement and movement,
etc.) is much faster than the rate of change in applica-
tions that access the data.

The challenge of providing data independence was the
genesis of modern database systems research, and has
kept the database community productively employed for
three decades.

The database community took this challenge to heart
because of the typical applications it serves. The need for
data independence arises in database settings because the
right-handside of the inequality is often so small: many
mission-critical database applications (banking, reserva-
tions, payroll systems, etc.) operate largely unchanged
for decades. By contrast, Moore’s law assures a steady
rate of change in the physical hardware. This is typi-
cally compounded by databases being reused over time
in unanticipated ways, which often requires modifica-
tions to the physical layout (new indexes, partitioning,
striping, etc.)

We believe that the inequality above arises again in
more general networked settings, for the opposite rea-
son. In many of today’s extreme network scenarios, the
data independence inequality holds because itsleft-hand
side is so large: networks at extreme scales are exceed-
ingly volatile. Moreover, many networking services are
naturally data intensive, and these services are growing
in complexity – they need more than the simple “level
of indirection” provided by traditional OS research. As
a result, it would seem that these systems would benefit
from the database community’s perspective on reusable
infrastructures for data independence.

2.2 Pillars of Data Independence

In retrospect, the database systems infrastructure for data
independence in database systems was achieved by in-
ventions in two core areas:

• Indexesallow value-based lookups to be about as
fast as direct lookups, removing the incentive for
applications to directly address data. Good indexes
adaptto changing data distributions, and guarantee
efficient, predictable performance without the need
for programmer intervention. This kind of index
technology was a key enabler of Codd’s vision; the
B-tree was invented concurrently with Codd’s first
papers on the relational model, and supplanted non-
adaptive schemes like ISAM that gave no formal
performance guarantees.

• Query optimizationallows for efficient execution
of declarative languages that support far more
than lookup queries (“dereferencing” or “search”).
Query optimization is also by nature an adaptive
scheme: as data distributions and physical storage
parameters change, a query optimizer is able to
measure these changes and modify the behavior of
applications as a result.

The p2p research community appears to be moving in
an analogous direction for massively distributed systems.
The first piece seems to be falling into place, through
the invention of a class of distributed routing techniques
known collectively asDistributed Hash Tables (DHTs)
(e.g., [29, 26, 32, 27, 19], etc.). DHTs assign values (log-
ical IDs) to machines on a network, and allow packets to
be routed “by value” to whichever machine is currently
responsible for that value.

The second piece of a data independence agenda
remains largely unstudied in the p2p community, and
presents a significant opportunity for additional research.
However, we should not expect the analogy to be precise:
something akin to query optimization may be needed for
a large family of networked applications, but there may
or may not be an explicit query in sight. We will return
to this issue again in Sections 4 and 6.

3 A Quick Introduction to DHTs
DHTs are distributed data structures that provide
content-based (a.k.a. “data-centric”) routing. The goal
is to network a very large, quickly changing set of ma-
chines, allowing requests for values (keys) to be correctly
routed to a machine currently managing that value. This
is to be done without any global knowledge – or perma-
nent assignment – of the mapping of keys to machines.
DHTs typically partition a logical key domain among the
current set of machines. DHTs typically have the follow-
ing design constraints:

• Few Neighbors (degree):Each node should only
maintain a small number of active “neighbors”, re-
membering for each neighbor its physical (IP) ad-
dress, and its logical “key” partition. A typical con-
straint for the number of neighbors islog n for a
network of n machines. By keeping this number
small, the arrival or departure of nodes from the net-
work results in a bounded number of update mes-
sages (log n for many DHTs).

• Low Latency (diameter): Each node should be
reachable from any other in a small number of net-
work routing hops; this requires that the neighbor-
hood graph have small diameter. Again,log n is a
typical constraint.

• Greedy Routing Decisions:Each node should be
able to decide how to forward keyed messages with-

out consulting any other nodes. These greedy deci-
sions must find the “short” (log n) paths between
any pair of nodes.

• Robustness (large min-cut):As nodes and links
come and go, the network should remain mostly
connected, and able to route packets. Similarly, it
should not exhibit “hot-spots” – overloaded nodes
and links. A necessary condition for these features
is a network with a non-trivial min-cut, to allow
multiple alternate routes for packets.

Most DHTs were invented by cleverly embedding a
graph of small degree, small diameter and non-trivial
min-cut into some metric space that permits greedy rout-
ing decisions. For example, Chord [29] embeds nodes
into a unit circle, such that each node’s neighbors are
at distance 1

2k across the circle for1 ≤ k ≤ log n.
CAN [26] embeds nodes into ad-dimensional torus
(d = log n is typical), so that each node’s neighbors
are adjacent along different dimensions. Plaxton’s al-
gorithm [23, 32, 27] embeds nodes onto the corners of
a high-dimensional binary hypercube, so that each node
n has one neighbor that is only “far” fromn on suc-
cessively smaller projections of the hypercube: i.e., the
value of theith neighbor ofn matchesn’s value on the
first i bits, but may differ otherwise. Variations on these
schemes abound; the interested reader is referred to a re-
cent analysis paper [11] for further discussion of these
embeddings.

We wish to make a few points here. First, DHTs
provide strong theoretical bounds on key “lookup” cost,
on routing-table “maintenance” cost, and on robustness
to failure. This contrasts with prior routing protocols
for p2p overlays, including the widely used “unstruc-
tured” p2p networks of Gnutella and KaZaA. While there
is work on improving unstructured p2p networks (e.g.,
[6, 31]), the analogy to B-Trees vs. ISAM seems rele-
vant here: DHTs bring theoretical clarity to a problem
previously addressed by heuristics. For the purpose of
simple key lookups, it is unclear why one would favor
unstructured networks like Gnutella when DHTs can pro-
vide strong performance guarantees2.

A second point is that DHTs are under extreme
scrutiny right now, both from algorithm designers and
system builders. Proposals for modifications and new
designs abound, some of which are important, some less
so. We expect there to be significant short-term churn in
this area, hopefully followed by a set of “winning” de-
sign considerations within a few years. Skeptics are en-
couraged to periodically revisit this research; many of the

2In fairness, unstructured p2p networks were specifically designed
for keyword search, not for generic key lookups (Section 5.1.) How-
ever, some p2p researchers have proposed unstructured p2p networks
as a general-purpose substrate.

initial pragmatic problems with these schemes are being
quickly and effectively addressed.

4 Evidence: Network Services
Given this introduction to DHTs, we continue by describ-
ing a few illustrative core network services that have es-
sentially reinvented simple data independence on the In-
ternet. We show that the data independence inequality is
satisfied in these scenarios, and describe how the service
“application logic” is decoupled from the physical prop-
erties of the changing network – typically via schemes
that are analogous to indexes. These examples are in-
tended to be illustrative; there are certainly other such
examples in the literature.

4.1 Internet Indirection Infrastructure

The Internet Indirection Infrastructure (i3) [28] proposes
a generic value-based mapping service that introduces a
level of indirection between communicating parties. Re-
ceivers usetriggers to indicate their interest in packets.
In their simplest form,i3 triggers are pairs(id, r), where
id is a globally unique identifier, andr is a node’s logical
address (key). A trigger(id, r) indicates that all packets
with identifier id should be forwarded by thei3 infras-
tructure to the node with addressr. This mapping service
can, for example, be used to facilitate mobility: as the re-
ceiver changes its address fromr to r′ (e.g. by roaming
or by switching devices), the receiver updates its trigger
to (id, r′). As a result all future packets with identifier
id will be forwarded to the receiver at the new address
r′. This way the sender is insulated from the recipient’s
changes of address. This mapping service can be used
for a variety of other networking applications. A 1-to-n
mapping of logical addresses to physical addresses sup-
ports “anycast”: the ability to direct a message to any
one of a set of functionally-equivalent servers (e.g. web
server replicas). The same mapping can similarly sup-
port multicast, where each message is routed to all the
addresses mapped to the sameid.

At first blush, i3 might sound to a database expert
like a simple index for providing data independence. A
main challenge in this arena is to achieve this “simple”
functionality efficiently and reliably at Internet scale and
volatility. i3 proposes leveraging DHTs to do this. Also,
i3 has aservice compositionfeature that is naturally
amenable to query optimization; we will have more to
say about this in Section 6.2.

4.2 Intentional Naming and The Like

Naming is considered to be one of the most fundamen-
tal and tricky problems in system design, especially for
distributed systems [9]. A family of proposals suggest re-
placing traditional identifier-based naming schemes with
declarative schemes ([10, 20], etc.) A well-known re-
cent example of this research thrust is the Intentional

[sic] Naming System [1]. This widely-cited idea sug-
gests that a naming system could be built such that ap-
plications would access services and devices in an inten-
sional fashion: by description, rather than by name. For
example, one might request that a document be sent to
“a black-and-white two-sided printer on the 6th floor”
rather than toprint626.cs.berkeley.edu:lp0 .
This is robust in the face of physical changes to the
hardware – ifprint626 has failed or was upgraded
to color, another printer could be found. Moreover, it
is easier for individuals to use, since it unifies service
discovery and service invocation. (This latter idea also
appears in the “e-services” literature that is currently un-
der investigation in some database circles.) INS supports
a semi-structured query language with nested attribute-
value pairs; its lookup structure predates DHTs and is
significantly more complicated than DHTs. More recent
papers from the same group promote the use of DHTs for
this purpose [29, 4].

4.3 Content Distribution Networks

Content Distribution Networks like Akamai provide two
services: they replicate web pages close to end-users,
and provide a data independence service that redirects an
HTTP request to a nearby replica – content-based any-
cast. This data independence is achieved by first hijack-
ing web requests at the DNS level, and then redirecting
them to nearby replicas via theconsistent hashingalgo-
rithm [15]. In this environment, the DNS naming scheme
offers the “hook” for inserting data independence, and
consistent hashing provides the actual indexing scheme
that maps URLs to physical objects. Note the clear re-
lationship between routing and indexing in this context:
the consistent hashing scheme can be viewed as a dis-
tributed index over a 1-to-n mapping, but in effect it is
routing network requests to machines with relevant con-
tent. Consistent hashing is a precursor to the Chord DHT.

5 More Complex Applications
The previous section showed that a host of core network-
ing facilities are made more robust to variations (in net-
work storage, network connectivity, networked device
characteristics, etc.) by providing simple indirections via
global-scale indexes. These “Overlay Network” ideas
provide network facilities via a layer overlaid on top of
IP. In this section we discuss a few examples of more
full-service global-scale applications that benefit from
more aggressive data independence, and motivate more
aggressive machinery (including query optimization) for
data independence.

5.1 P2P Filesharing: An Emerging Debate

Filesharing systems need little introduction; they are
the most widely-distributed query systems ever built.
Filesharing systems provide two basic services: mas-

sively distributed keyword search, and point-to-point
file transfer. In addition to the much-discussed
legal/ethical/business controversy over sharing copy-
righted material, the physical design of the keyword
search in these systems is also a point of technical de-
bate. Moreover, the popularity of the systems make them
a good stress test for large-scale global network applica-
tions, and hence a focus of p2p research.

The leading deployed systems (KaZaA, Morpheus,
Gnutella, etc.) are based on physical designs in which
file names are indexed into a hierarchy in the network:
nodes copy their filename list to supernodes (“ultra-
peers”) in a shallow hierarchy (Gnutella has only 2 lev-
els: peers and ultrapeers). Queries are “flooded” across
as many nodes on the root level as is feasible, and these
nodes may forward queries on to their children in the hi-
erarchy. One complaint with this architecture is its lack
of robustness to failure: if a node high in the hierarchy
fails, its children are unreachable until the network read-
justs its hierarchy. Another common complaint is that in
practice flooding must be limited to a small radius around
the query site, sacrificing recall.

Recent proposals suggest using traditional inverted
files indexed by DHTs; Overnet is a deployed filesharing
system that uses this scheme. Boolean Search proceeds
in the traditional way, hashing via the DHT to contact all
sites that host a keyword in the query, and doing a dis-
tributed join of the postings lists of matching files. This
design promises full recall without flooding, but may use
significant bandwidth for distributed joins.

There is no consensus as to the best p2p design for
these keyword queries. Recent back-of-the-envelope cal-
culations suggest that there is a bandwidth/recall trade-
off between the two, and that neither scheme scales up
well enough to do keyword search on a Google-scale
workload [16]. This paper also suggests a number of
research directions in dynamically optimizing keyword
search over DHTs. Of course the data independence af-
forded by declarative keyword search would admit hy-
brid unstructured+DHT schemes as well.

5.2 Internet Monitoring

As the Internet has grown, it has become increasingly
difficult to understand, measure, protect and control. A
variety of projects are attempting to monitor the Inter-
net for both scientific and security purposes ([22, 30],
etc.) These projects do modest-scale distributed trac-
ing followed by a degree of centralized data collection,
and subsequent application-specific analysis queries. In
database terms, these projects are data warehousing ef-
forts, and they face common shortcomings of warehous-
ing: they cannot cover all the possible data sources, and
they trade away data freshness for simplicity of query ex-
ecution. Note that the data volumes in Internet monitor-
ing can make “data-shipping” solutions like warehousing

infeasible without distilling the data significantly.
An alternative is to build a real-time,distributedquery

engine for ad-hoc Internet monitoring queries. This
would allow masses of individual end-users to donate
some of their cycles and bandwidth for reporting their
local streaming view of Internet traffic; these multiple
views could be federated in a p2p fashion to support both
one-shot analysis queries as well as continuous queries.

This directly maps the traditional data independence
problem to networks: declarative network monitoring
queries must be optimized to physical query execution
schemes. However there is a fundamental new challenge
here: thephysical changes occur in the query’s interme-
diate dataflow, rather than in the base storage. Tuples
in an ongoing query plan are being routed all over the
Internet, and these routes must be gracefully monitored
and adapted for various query optimization metrics.

6 Some Relevant DB Technologies

Modern databases achieved data independence via a mix
of techniques that arose over a number of years. The
mix has been fairly well codified by now, but a huge in-
vestment of invention and experimentation led to today’s
conventional wisdom. In this section we mention a few
of the techniques we are studying – in addition to DHTs
– that point the way toward aggressive data independence
for networks. These are intended only as illustrative ex-
amples; the list neither exhaustively covers current tech-
nologies, nor does it purport to provide the union of func-
tionality required for the applications listed above.

6.1 Distributed Aggregation

Data aggregation is an important feature in many net-
work scenarios. It is important for exploratory data anal-
ysis, which is a key component of network monitoring,
for example. It is also critical fordata reduction: in many
scenarios it is infeasible to ship all the data, but various
synopses can be constructed to provide robust approxi-
mate answers to queries. Creating synopses on the fly
can be done in distributed aggregation frameworks [13].

Standard DHT APIs provide callback interfaces so
that application-level code can intercept packets as they
are routed. This allows a natural aggregation scheme to
be implemented in DHTs. Simply put, every node in-
serts (sends) their locally aggregated partial state into the
DHT, keyed by the identifier of the query site. The DHT
routes these partial state tuples in a multi-hop fashion.
Before a node forwards a tuple, it intercepts it, combines
it with its previously collected partial state, and even-
tually re-injects collected results back toward the query
site. Current DHTs are targeted to point-to-point com-
munication, but is not clear whether their aggregation
topologies are efficient and robust.

6.2 Eddies: Commutative Routing

Eddies are an adaptive query processing scheme combin-
ing query optimization and execution into a single feed-
back control loop [3]. In contrast to traditional databases,
eddies treat all of query processing as a single adapt-
able task of routing tuples through (partially) commuta-
tive operators. The space of legal query plans is covered
by legal eddy routings, but the routing approach allows
for simple adaptation at runtime. Moreover, theSteMex-
tensions to eddies [24, 18] provide significant additional
routing options, corresponding to hybridized join algo-
rithms, competitive access methods, and multi-query op-
timizations. Because eddies can adapt at fine grain, they
can deal gracefully with unknown, volatile physical en-
vironments, data distributions, and query mixes.

Although eddies represent a radical departure from
traditional database techniques, their routing-based ap-
proach is very natural for networks. Moreover, eddies
naturally handle the new form of physical volatility men-
tioned in Section 5.2: they gracefully adapt to physical
changes to in-flight query dataflows, a key feature that
traditional query optimization does not provide.

As a networking-centric example, consider how ed-
dies complement the service composition model ofi3.
An i3 user can inject a packet that specifies a list of ser-
vices that need to be invoked on some arguments speci-
fied in the packet’s payload. Ini3, this list is expressed
as a stack of keys, where each key identifies a service.
Each routing step is handled by popping the next key off
of the stack, and routing to that key.

The i3 stack model only supports strict orderings of
services, but many services are commutative. For exam-
ple, a data dissemination system may have to (1) fetch
multiple pieces of data from a CDN, and (2) recursively
expand email aliases of appropriate recipients. The calls
to these services can be interleaved arbitrarily. To accom-
modate such commutative services, one can consider the
specification of partial orders for service composition in
i3; the partial order for a given packet can be satisfied by
one of many possible total orders, which correspond to
“query plans”, or routes through the network.

The i3 routing layer should consider multiple order-
ings of these routes. It needs to take into account the la-
tency of each routing step, based on the trigger’s current
location and remaining partially-ordered tasks. More-
over, note that each lookup step may significantly in-
crease the payload – URL lookups expand the trigger
with text and embedded images, and the email lookups
may expand the trigger with long lists of addresses.
Hence the latencies have to be traded off against potential
future bandwidth needs – the traditional database notion
of “selectivity” maps to payload explosion here.

6.3 Recursive Queries and Network Graphs

Network routing tables are distributed adjacency matri-
ces of logical links. Routing protocols used to maintain
these tables (e.g. BGP) are criticized as ad hoc and sub-
optimal.

There is currently no simple way for nodes to dis-
cover multi-hop topology information that could help
provide better routing. Some simple route-discovery
queries might include “is nodeX reachable via any IP
path?” or “which nodes arek hops away from me in the
Gnutella overlay?” (this latter query is especially natural
because Gnutella only provides ak-hop query flooding
radius). These are recursive queries on graphs. Recursive
queries are especially natural in networks, as are materi-
alized views for such queries. As a result, many of the
database techniques developed for recursive query pro-
cessing may be relevant for network routing protocols,
particularly those techniques that have been mapped to
parallel or distributed scenarios [5].

6.4 Range Search over DHTs

DHTs are analogous to hash indexes, providing only
exact-match lookups. An open question is whether range
queries can be supported in as graceful and elegant a dis-
tributed fashion as DHTs support equality queries. Rat-
nasamy proposes implementing range queriesoveran ar-
bitrary DHT via a trie-based scheme [25], which hashes
data to prefixes of the attributes to be indexed. This
is reminiscent of Litwin’s Trie Hashing [17], but has
an added advantage that the “memory addresses” where
buckets of the trie are stored are in fact the DHT keys
corresponding to the prefixes. Hence one can “jump”
into the trie at any node (key prefix) via a DHT lookup,
and do binary search in the key-length to find the ap-
propriate leaf at the start of a range. This provides both
efficient lookups, and robustness in the face of failures
(missing trie nodes can be “skipped”.) In the worst case,
this scheme provides range queries with an overhead of
O(log log |D|) DHT key lookups, whereD is the data
domain being indexed. More work is required to refine
this technique for skewed data sets over large domains.
Another simple scheme is to treat DHT keys as addresses
of “pages”, and directly build a B+-tree over this stor-
age abstraction; some work would be required to make
the tree robust to failure (perhaps leveraging a version of
Ratnasamy’s direct-addressing trick mentioned above.)
Alternative schemes have been proposed as well, includ-
ing a DHT-based range-caching scheme [12], and a tech-
nique specifically designed for the CAN DHT based on
space-filling curves [2].

7 Infecting the Network, Peer by Peer
Today’s most important and widely-used computer sys-
tems revolve around the Internet. We have argued here

that a core competency of the database community – sup-
port for data independence – will play an increasing role
in networked system design. We illustrated this point
with a number of network services, and proposed a hand-
ful of database technologies that may be ripe for exploita-
tion inside networks.

Peer-to-peer systems are a natural “host” for database
ideas to infect networking design. The most popular p2p
systems are filesharing systems, which are heavily query-
driven. Relative to Internet routers, p2p systems are easy
to deploy and to influence, and can tolerate the overheads
of the fairly detailed data manipulation that is typically
done in databases. With some luck, critical ideas may
migrate from p2p applications into more ubiquitous parts
of the network, perhaps even into the fabric of the net-
work itself.

At Berkeley we’re designing a reusable p2p query en-
gine called PIER [14], which is our platform for inves-
tigating many of the technical issues and applications
mentioned above.

Acknowledgments
I am grateful to various people for (still-evolving) discussions on this
theme. Thanks to Ryan Huebsch, Boon Loo, Sylvia Ratnasamy, Tim-
othy Roscoe, Scott Shenker, Ion Stoica, David Culler, Mike Franklin,
Hari Balakrishnan, Frans Kaashoek, David Karger, Robert Morris, and
the anonymous reviewer.

References
[1] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley.

The design and implementation of an intentional naming system.
In Proc. 17th ACM SOSP, Dec. 1999.

[2] A. Andrzejak and Z. Xu. Scalable, efficient range queries for grid
information services. InProc. Second IEEE International Con-
ference on Peer-to-Peer Computing, Linkoping University, Swe-
den, Sept. 2002.

[3] R. Avnur and J. M. Hellerstein. Eddies: Continuously adaptive
query processing. InProc. ACM SIGMOD, pages 261–272, May
2000.

[4] H. Balakrishnan, S. Shenker, and M. Walfish. Semantic-free
referencing in linked distributed systems. In2nd International
Workshop on Peer-to-Peer Systems (IPTPS), Feb. 2003.

[5] F. Cacace, S. Ceri, and M. A. W. Houtsma. A survey of paral-
lel execution strategies for transitive closure and logic programs.
Distributed and Parallel Databases, 1(4):337–382, 1993.

[6] Y. Chawathe, S. Ratnasamy, L. Breslau, and N. Lanham. Making
gnutella-like p2p systems scalable. InProc. of ACM SIGCOMM,
Aug. 2003.

[7] E. F. Codd. A relational model of data for large shared data banks.
CACM, 13(6):377–387, 1970.

[8] C. J. Date and P. Hopewell. File definition and logical data in-
dependence. InProc. ACM SIGFIDET, pages 117–138. ACM,
1971.

[9] M. J. Flynn, J. Gray, A. K. Jones, K. Lagally, H. Opderbeck,
G. J. Popek, B. Randell, J. H. Saltzer, and H.-R. Wiehle, editors.
Operating Systems, An Advanced Course, volume 60 ofLecture
Notes in Computer Science. Springer, 1978.

[10] D. K. Gifford, P. Jouvelot, M. Sheldon, and J. O’Toole. Semantic
file systems. InProc. 13th ACM SOSP, Oct. 1991.

[11] K. Gummadi, R. Gummadi, S. Ratnasamy, S. Shenker, and I. Sto-
ica. The impact of dht routing geometry on resilience and prox-
imity. In ACM SIGCOMM, Aug. 2003.

[12] A. Gupta, D. Agrawal, and A. E. Abbadi. Approximate range
selection queries in peer-to-peer systems. InProc. First Biennial
Conference on Innovative Data Systems Research (CIDR 2003),
Asilomar, CA, Jan. 2003.

[13] J. M. Hellerstein, W. Hong, S. Madden, and K. Stanek. Beyond
average: Toward sophisticated sensing with queries. InProc. In-
formation Processing in Sensor Networks (IPSN), 2003.

[14] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker,
and I. Stoica. Querying the internet with PIER. InProc. 29th In-
ternational Conference on Very Large Data Bases (VLDB), 2003.

[15] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and
R. Panigrahy. Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the world wide web.
In Proc. 29th Annual ACM Symposium on Theory of Computing
(STOC), 1997.

[16] J. Li, B. T. Loo, J. M. Hellerstein, M. F. Kaashoek, D. Karger, and
R. Morris. On the feasibility of peer-to-peer web indexing and
search. In2nd International Workshop on Peer-to-Peer Systems
(IPTPS), 2003.

[17] W. Litwin. Trie hashing. InProc. ACM SIGMOD International
Conference on Management of Data, pages 19–29, Ann Arbor,
Michigan, Apr. 1981.

[18] S. R. Madden, M. A. Shah, J. M. Hellerstein, and V. Raman.
Continuously adaptive continuous queries over streams. InProc.
ACM SIGMOD, 2002.

[19] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer in-
formation system based on the xor metric. InProc. of the 1st In-
ternational Workshop on Peer-to-Peer Systems (IPTPS’02), Mar.
2002.

[20] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The information
bus–an architecture for extensible distributed systems. InProc.
14th ACM SOSP, pages 58–68, Dec. 1993.

[21] C. H. Papadimitriou. Database metatheory: Asking the big
queries. InProc. 14th Symposium on Principles of Database Sys-
tems (PODS), pages 1–10, May 1995.

[22] V. Paxson, J. Mahdavi, A. Adams, and M. Mathis. An archi-
tecture for large-scale internet measurement.IEEE Communica-
tions, 36(8):48–54, Aug. 1998.

[23] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing nearby
copies of replicated objects in a distributed environment. InACM
Symposium on Parallel Algorithms and Architectures (SPAA),
1997.

[24] V. Raman, A. Deshpande, and J. M. Hellerstein. Using state mod-
ules for adaptive query processing. InProc. IEEE International
Conference on Data Engineering (ICDE), 2003.

[25] S. Ratnasamay, J. M. Hellerstein, and S. Shenker. Range queries
in DHTs. Technical Report IRB-TR-03-009, Intel Research, July
2003.

[26] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker.
A scalable content addressable network. InProc. 2001 ACM SIG-
COM Conference, August 2001.

[27] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems.
Lecture Notes in Computer Science, 2218, 2001.

[28] I. Stoica, D. Adkins, S. Zhaung, S. Shenker, and S. Surana. In-
ternet indirection infrastructure. InProc. ACM SIGCOMM, Aug.
2002.

[29] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrish-
nan. Chord: Scalable Peer-To-Peer lookup service for internet
applications. InProc. 2001 ACM SIGCOMM Conference, pages
149–160, 2001.

[30] R. Wolski, N. Spring, and J. Hayes. The Network Weather Ser-
vice: A distributed resource performance forecasting service for
metacomputing.Journal of Future Generation Computing Sys-
tems, 15(5-6):757–768, Oct. 1999.

[31] B. Yang and H. Garcia-Molina. Designing a super-peer network.
In Proc. of the 19th International Conference on Data Engineer-
ing (ICDE), Mar. 2003.

[32] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An
infrastructure for fault-tolerant wide-area location and routing.
Technical Report UCB/CSD-01-1141, UC Berkeley, Apr. 2001.

