Query Optimizers

The Dimensions of Query Optimization

Plan Space

Selections

Cascade

 $\sigma_{c_1 \wedge c_2 \wedge \cdots \wedge c_k}(R) \equiv \sigma_{c_1}(\sigma_{c_2}(\ldots(\sigma_{c_k}(R))\ldots))$ Reorder $\sigma_{c_1}(\sigma_{c_2}(R)) \equiv \sigma_{c_2}(\sigma_{c_1}(R))$

Projections

$$
\text{Cascade} \qquad \pi_{\mathbb{A}_1}(R) \equiv \pi_{\mathbb{A}_1}\left(\pi_{\mathbb{A}_2}\left(\dots \left(\pi_{\mathbb{A}_k}(R)\right)\dots\right)\right), \text{ if } \mathbb{A}_1 \subseteq \dots \subseteq \mathbb{A}_k
$$

Joins & Cross-products

Commutative

 $R \times S \equiv S \times R$ $R \bowtie_{x=x} S \equiv S \bowtie_{x=x} R$

Associative

 $R \times (S \times T) \equiv (R \times S) \times T$ $R \bowtie_{x=x} (S \bowtie_{x=x} T) \equiv (R \bowtie_{x=x} S) \bowtie_{x=x} T$ WARNING! $\neq R \bowtie_{a=a} (S \bowtie_{b=b} T)$ $(R \Join_{a=a} S) \Join_{b=b} T$ $\equiv R \bowtie_{a=a} (S \times T)$ $\equiv R \Join_{a=a \wedge b=b} (S \times T)$ $R(a, b)$; $S(a, c)$; $T(b, d)$ S doesn't have b! We lost b=b! We replaced a join with a product!

Relational Equivalences

 \overline{R}

 $R S$

Left- vs. right- deep BNLJ

exhausted (e.g. with Hash Join).

Relational Equivalences – Join Pruning Heuristics

of permutations: $n!$

How many left-deep trees?

Base table access with *selections* and *projections*

- Heap scan
- Index scan

Equijoins

- Page Nested Loop
- Block Nested Loop
- Index Nested Loop
- Sort-Merge Join
- Grace Hash Join

Theta-Joins

• Block Nested Loop

Physical Equivalences

Cost Estimation

#IO + *CPU-factor* * #tuples

Cost of each operator in plan

- IO cost of sequential scan, index scan, joins, etc., when we know input size
- Catalog keeps track of
	- Base table size (for leaf operators)
	- Index sizes

Estimate result size for each operator

- Operator output is downstream operator's input size
- For selections, and joins, estimate based on how much a selection condition reduces the size of the input table: *Selectivity*.

Cost Estimation

- *Catalogs* updated periodically.
	- Too expensive to do on every update
	- Crude estimates anyway!
- Modern systems keep finer-grained info on the distribution of values (e.g. histograms, sketches, etc.)

ANALYZE tbl; select $*$ from pg_stats where tablename = $'R'$

Statistics and Catalogs

- Maximum result size: product of input sizes (think) $R \times S \times \dots$
- Each term $p_1, ..., p_n$ reduces the input by a factor
	- Reduction Factor = **Selectivity** = \vert Output|/|Input|
	- Result size $=$ Maximum result size $*$ Selectivity
- Simplifying assumptions
	- *Uniformity*: all values in a table are uniformly distributed
	- *Independence*: predicates are independent
- Selectivity \sim Probability

Result Size Estimation and Selectivity

Equality $keys(A) = 100$ sel = 1 $keys(A)$ $= 0.01$

(Uniformity)

Inequality
\nLow(A) = 3000; High(A) = 4000;
\n
$$
sel = \frac{High(A) - v}{High(A) - Low(A) + 1} \approx 0.5
$$

(Uniformity)

Conjunction

\n
$$
keys(A) = 100; keys(B) = 10
$$
\n
$$
sel = \frac{1}{keys(A)} \times \frac{1}{keys(B)} = 0.001
$$

(Independence)

Selectivity by example

select * from R where $A = 3527$ OR $B = 20$;

Disjunction (Don't Double Count!)

$$
keys(A) = 100; keys(B) = 10
$$

sel = $\frac{1}{keys(A)} + \frac{1}{keys(B)} - \frac{1}{keys(A)} \times \frac{1}{keys(B)} = 0.109$ (Independence)

select * from R

Column Equality

where $B = C$; keys $(B) = 10 = \{a, b, c, d, e, f, g, h, i, j\};$ $keys(C) = 2 = {a, b}$

$$
sel = sel(B = a \land C = a) + sel(B = b \land C = b)
$$

+sel(B = c \land C = c) + sel(B = d \land C = d) + ...

sel =
$$
\frac{1}{2} * \frac{1}{10} + \frac{1}{2} * \frac{1}{10} + 0 * \frac{1}{10} + 0 * \frac{1}{10} + \dots
$$

$$
sel = \frac{1}{10} = \frac{1}{\max(\text{keys}(B), \text{keys}(C))}
$$

Selectivity by example

(Independence)

Join Selectivity

What if we don't have any estimates? 1/10 is the Selinger way

Selectivity by example

```
32
    /* default selectivity estimate for equalities such as "A = b'' */
33
    #define DEFAULT_EQ_SEL 0.005
34
35
    /* default selectivity estimate for inequalities such as "A < b" */
36
    #define DEFAULT INEQ SEL 0.3333333333333333
37
38
    /* default selectivity estimate for range inequalities "A > b AND A < c" */
39
40
    #define DEFAULT RANGE INEQ SEL 0.005
41
42
    /* default selectivity estimate for multirange inequalities "A > b AND A < c" */43
    #define DEFAULT MULTIRANGE INEQ SEL 0.005
44
    /* default selectivity estimate for pattern-match operators such as LIKE */45
    #define DEFAULT MATCH SEL
                                0.005
46
47
    /* default selectivity estimate for other matching operators */48
    #define DEFAULT_MATCHING_SEL
49
                                    0.010
50
    /* default number of distinct values in a table */51
52
    #define DEFAULT NUM DISTINCT 200
```
Postgres Selectivities

Search Algorithm

Base case $(n = 1$ Relation) Induction case $(n = k + 1$ relations)

Queries with σ , π , and Group By/Aggregation:

- estimate cost of every available access method (e.g. heap scan/index scan…)
- Choose/store the min cost and its plan
- Selects, projects (on-the-fly) so can be ignored
- Results pipelined into grouping/aggregation (hashing or sorting)

The Search Strategy: Dynamic Programming

Queries with M on 2 or more relations:

- estimate cost for every
	- Order of left-deep plan
	- Join algorithm used in each join

Access methods costs for relation \bm{R} with index \bm{I}

• Heap file seq scan:

#pages(R)

- Primary key B+ tree index matching equality selection: $(height(I) + 1) + 1$
- Clustered index I matching selection with selectivity sel: $(H$ pages (I) + #pages (R)) * sel
- Non-clustered index I matching selection: $(\# \text{pages}(I) + \# \text{tuples}(R)) * \text{sel}$

Base case: cost of $n = 1$ relation plans

$$
sel = \frac{1}{\text{keys(I)}} = \frac{1}{10};
$$
\n
$$
#pages(R) = 500;
$$
\n
$$
#tuples(R) = 50000
$$

Access methods costs for movies **R** with index **I** on rating

• Heap file seq scan:

#pages $(R) = 500$

- Clustered index I matching selection with selectivity sel: #pages (I) + #pages (R)) * sel = $(50 + 500)$ * 1 10 $= 55$
- Non-clustered index I matching selection:

#pages(*I*) + #tuples(*R*)) * sel = $(50 + 50000)$ * 1 10 $= 5005$

An Example

Enumerate "relevant" left-deep plans over $n = k + 1$ relations in $k + 1$ passes

- Pass 1 (*Base Case*): Find best plan for each single relation
- Pass $k + 1$ (*Inductive Step*): Find best way to join result of a k -relation plan (*as outer*) to the $k + 1$ th relation. Assumption: Optimal result has

For each subset of relations, keep:

cheapest plan overall

optimal substructure

The best left-deep plan is composed of best decisions on the subplans

The best for joining R, S, T is one of these 3:

- (The best plan for joining R,S) \bowtie T
- (The best plan for joining T, S) \bowtie R
- (The best plan for joining R, T) $\bowtie S$

Induction case: cost of $n = k + 1$ relation plans

Enumerate "relevant" left-deep plans over $n = k + 1$ relations in $k + 1$ passes

- Pass 1 (*Base Case*): Find best plan for each single relation
- Pass $k + 1$ (*Inductive Step*): Find best way to join result of a k -relation plan (*as outer*) to the $k + 1$ th relation.

For each subset of relations, keep:

- cheapest plan overall
- cheapest plan overall for each "interesting order" Join attributes of potential subsequent merge joins

What makes an order interesting?

An intermediate result has an "interesting order" if it is *sorted* by anything we can use later in the query

- ORDER BY attributes
- GROUP BY attributes
-

Induction case: cost of $n = k + 1$ relation plans

Divide query into parts

Part 1: Dynamic Programming for *select-project-join* (SPJ).

- Avoid cross-products consider a $k + 1$ join/product with a k -relation plan if:
	- There is a join condition
	- There are no more where clause predicates

Part 2: Order By, Group BY, Aggregation

- Might get an "interestingly ordered" plan
- Or add additional sort/hash operator

Query plan search even with pruning is still $O(e^n)$

Enumerating plans – the System R/Selinger way

- There is a lot more to learn: not the whole truth, but it's a good foundation:
	- The Postgres DP-optimizer also considers bushy plans!
	- Many other techniques: genetic optimizer, RL-optimizers, etc.
	- Still an active field: It's a hard problem!
- Better queries or better DBMS tuning
	- Why did the optimizer choose this terrible plan?
	- How can I help it to select a better one?
- A good perspective for many CS problems
	- Many problems benefit from a declarative/constrained specification and an optimizer to determine the best implementation

Why learn more about optimizers?