
Query Optimizers

select * from R
where a > 5
order by b;

𝜎!"# 𝜏$(𝑅)

𝑅

𝜎!"#

𝜏$
Logical Query Plan

Query Parser
parses/rewrites plan

Optimized Physical Query Plan

𝑅

𝜎!"#

𝜏$

Heap Scan

selection

External merge
sort

Query Optimizer

SQL Query

Declarative Domain
Specific Language (DSL)

What you want

Imperative Program
How to compute it

Optimizer

Software Synthesis
Area of growing research interest

Query Optimizer

select * from R
where a > 5
order by b;

𝜎!"# 𝜏$(𝑅)

𝑅

𝜎!"#

𝜏$
Logical Query Plan

Query Parser
parses/rewrites plan

Optimized Physical Query Plan

𝑅

𝜎!"#

𝜏$

Heap Scan

selection

External merge
sort

Query Optimizer

SQL Query

Plan Generator Plan Cost Estimator Catalog Manager

Schema &
Statistics

• Goal:
• Ideal – Least cost
• Reality – Least estimated cost / not so bad plan

• Focus on the 1979 System R / “Selinger” Optimizer
• Cost: #IOs + CPU-factor ×#tuples;

Plan
Space

What are all the
possible plans to
consider?

How to enumerate the space?
• Relational Equivalences
• Physical Equivalences

Massive Space! Catalan number
𝐶! ≈ 4! is the number of full
binary trees with 𝑛 + 1 base
tables; 𝑛 joins ≈ 4! plans!

Prune (Heuristics)
• Avoid plans with cartesian products
• Consider only left-deep join trees

Cost
Estimation

How to compare
two plans? Which
plan is better?

What is the cost of a plan? How to estimate the cost of a
plan without executing it?

Update statistics periodically in a catalog
Use crude but practical formulae
• Selectivity to estimate intermediate

results

Search
Strategy

How do we find
the lowest-cost
plan?

How to search efficiently
without full enumeration?

Structure search to avoid sub-
optimal plan spaces.

Use Dynamic Programming + maintain
“interesting orders”
• Assume principle of optimality

The Dimensions of Query Optimization

Abstraction Concrete Formulation The Selinger SolutionChallenges

Plan Space

Relational Equivalences

𝜎!"∧!#∧⋯∧!$ 𝑅 ≡ 𝜎!" 𝜎!# … 𝜎!$(𝑅) …

𝜋𝔸" 𝑅 ≡ 𝜋𝔸" 𝜋𝔸# … 𝜋𝔸$ 𝑅 … , if 𝔸% ⊆ ⋯ ⊆ 𝔸&

𝑅 × 𝑆 ≡ 𝑆 × 𝑅
𝑅 ⋈'(' 𝑆 ≡ 𝑆 ⋈'(' 𝑅

𝑅 × 𝑆 × 𝑇 ≡ 𝑅 × 𝑆 × 𝑇
𝑅 ⋈'(' 𝑆 ⋈'(' 𝑇 ≡ 𝑅 ⋈'(' 𝑆 ⋈'(' 𝑇

WARNING!

≢ 𝑅 ⋈!%! 𝑆 ⋈$%$ 𝑇

𝑅 ⋈!%! 𝑆 ⋈$%$ 𝑇

≢ 𝑅 ⋈!%! 𝑆 × 𝑇

≡ 𝑅 ⋈!%!∧$%$ 𝑆 × 𝑇

𝑅 𝑎, 𝑏 ; 𝑆 𝑎, 𝑐 ; 𝑇(𝑏, 𝑑)

S doesn’t have b!

We lost b=b!

We replaced a join
with a product!

𝜎!" 𝜎!# 𝑅 ≡ 𝜎!# 𝜎!" 𝑅Reorder

Selections

Cascade

Projections

Cascade

Joins & Cross-products

Commutative

Associative

Plan
Space

What are all the
possible plans to
consider?

How to enumerate the
space?
• Relational Equivalences
• Physical Equivalences

Massive Space! 𝑛
joins ≈ 4' plans!

Prune (Heuristics)
• Avoid plans with cross products
• Consider only left-deep join trees

Left-deep Right-deepBushy

Relational Equivalences – Join Pruning Heuristics

⋈

𝑅 𝑆

𝑇

⋈ 𝑈

⋈

Block

Block

Block

⋈

𝑅 𝑆

𝑇

⋈𝑈

⋈
Block

Left- vs. right- deep
BNLJ

Why left deep?
Left-deep trees allow us to generate
pipelined plans where intermediate results
are not written to temporary files (e.g.
with BNLJ) and buffer pools are not
exhausted (e.g. with Hash Join).

How many left-deep trees?

⋈

𝑅 𝑆 𝑇 ⋈

𝑅 𝑆 𝑇

⋈

⋈

𝑆 𝑅 𝑇

⋈

⋈

𝑆 𝑇 𝑅

⋈

⋈

𝑇 𝑆 𝑅

⋈

⋈

𝑅 𝑇 𝑆

⋈

⋈

𝑇 𝑆 𝑆

⋈

of permutations: 𝑛!

Physical Equivalences

Base table access with selections and projections
• Heap scan
• Index scan

Equijoins
• Page Nested Loop
• Block Nested Loop
• Index Nested Loop
• Sort-Merge Join
• Grace Hash Join

Theta-Joins
• Block Nested Loop

Heap Scan
R

Heap Scan
S

BNLJ
(id = id)

sort
id

Heap Scan
R

Heap Scan
S

SMJ
(id = id)

≡

Plan
Space

What are all the
possible plans to
consider?

How to enumerate the
space?
• Relational Equivalences
• Physical Equivalences

Massive Space! 𝑛
joins ≈ 4' plans!

Prune (Heuristics)
• Avoid plans with cross products
• Consider only left-deep join trees

Cost Estimation

Cost
Estimation

How to compare
two plans? Which
plan is better?

What is the
cost of a
plan?

How to estimate the cost
of a plan without
executing it?

Update statistics periodically in a catalog
Use crude but practical formulae
• Selectivity to estimate intermediate results

Cost Estimation

#IO + CPU-factor * #tuples

Cost of each operator in plan
• IO cost of sequential scan, index scan, joins, etc., when we know input size
• Catalog keeps track of

• Base table size (for leaf operators)
• Index sizes

Estimate result size for each operator
• Operator output is downstream operator’s input size
• For selections, and joins, estimate based on how much a selection

condition reduces the size of the input table: Selectivity.

Statistics and Catalogs

• Catalogs updated periodically.
• Too expensive to do on every update
• Crude estimates anyway!

• Modern systems keep finer-grained info on
the distribution of values (e.g. histograms,
sketches, etc.)

Statistic Meaning
tuples # of tuples in a table (cardinality)
pages # of disk pages in a table

Low(𝐴1, … , 𝐴𝑛) min value in a column 𝐴𝑖
High(𝐴1, … , 𝐴𝑛) max value in a column 𝐴𝑖
Keys(𝐴1, … , 𝐴𝑛) # of distinct values in a column 𝐴𝑖

index_height(𝐼1, … , 𝐼𝑘) the height of an index 𝐼𝑖
index_pages(𝐼1, … , 𝐼𝑘) # of disk pages in an index 𝐼𝑖

ANALYZE tbl;
select * from pg_stats where tablename = ‘R’

Result Size Estimation and Selectivity

• Maximum result size: product of input sizes (think
𝑅 × 𝑆 ×⋯)

• Each term 𝑝5, … , 𝑝6 reduces the input by a factor
• Reduction Factor = Selectivity = |Output|/|Input|
• Result size = Maximum result size * Selectivity

• Simplifying assumptions
• Uniformity: all values in a table are uniformly

distributed
• Independence: predicates are independent

• Selectivity ~ Probability

select * from
R, S, ... where
p1 AND p2 …

Selectivity by example

select * from R
where A = 3527;

Equality
keys(𝐴) = 100

sel =
1

keys(𝐴)
= 0.01

select * from R
where A = 3527
AND B = 20;

(Uniformity)

(Uniformity)

Conjunction
keys 𝐴 = 100; keys 𝐵 = 10

sel =
1

keys(𝐴)×
1

keys(𝐵) = 0.001

select * from R
where A > 3500;

Inequality
Low 𝐴 = 3000; High 𝐴 = 4000;

sel =
High 𝐴 − 𝑣

High 𝐴 − Low 𝐴 + 1
≈ 0.5

(Independence)

Selectivity by example

(Independence)

select * from R
where A = 3527
OR B = 20;

keys 𝐴 = 100; keys 𝐵 = 10

sel =
1

keys(𝐴) +
1

keys(𝐵) −
1

keys 𝐴 ×
1

keys 𝐵 = 0.109

select * from R
where B = C; keys 𝐵 = 10 = 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖, 𝑗 ;

keys 𝐶 = 2 = {𝑎, 𝑏}

𝑠𝑒𝑙 = 𝑠𝑒𝑙 𝐵 = 𝑎 ∧ 𝐶 = 𝑎 + 𝑠𝑒𝑙 𝐵 = 𝑏 ∧ 𝐶 = 𝑏
+𝑠𝑒𝑙 𝐵 = 𝑐 ∧ 𝐶 = 𝑐 + 𝑠𝑒𝑙 𝐵 = 𝑑 ∧ 𝐶 = 𝑑 + …

sel = (
)
∗ (
(*
+ (

)
∗ (
(*
+ 0 ∗ (

(*
+ 0 ∗ (

(*
+	…

sel =
1
10 =

1
max keys 𝐵 , keys(𝐶)

Disjunction (Don’t Double Count!)

Column Equality

(Independence)

Selectivity by example

select * from
R, S
where R.A = S.A

keys 𝑅. 𝐴 = 100; #tuples	=	500
keys 𝑆. 𝐴 = 50; #tuples	=	200
Equivalent to Column Equality over 𝑅 ×|𝑆|

sel =
1

max(keys 𝐴 , keys(𝐵))

select * from R
where A != 3500; keys 𝐴 = 100

sel 𝐴 = 3500 =
1
100

sel(𝐴! = 3500) = 1 – sel(𝐴 = 3500) = 0.99

Join Selectivity

NOT

What if we don’t have any estimates? 1/10 is the Selinger way

Postgres Selectivities

Search Algorithm

Search
Strategy

How do we
find the lowest-
cost plan?

How to search efficiently
without full enumeration?

Structure search to avoid
sub-optimal plan spaces.

Use Dynamic Programming +
maintain “interesting orders”
• Assume principle of optimality

The Search Strategy: Dynamic Programming

What is DP? Break down a problem into simpler subproblems
assuming the optimal solution to the overall problem depends
upon the optimal solution to its subproblems.

Base case (𝑛 = 1 Relation) Induction case (𝑛 = 𝑘 + 1 relations)

Queries with σ, π, and Group By/Aggregation:
• estimate cost of every available access method (e.g. heap

scan/index scan…)
• Choose/store the min cost and its plan
• Selects, projects (on-the-fly) so can be ignored
• Results pipelined into grouping/aggregation (hashing or

sorting)

Queries with ⋈ on 2 or more relations:
• estimate cost for every

• Order of left-deep plan
• Join algorithm used in each join

Base case: cost of 𝑛 = 1 relation plans

Access methods costs for relation 𝑹 with index 𝑰
• Heap file seq scan:

#pages(R)

• Primary key B+ tree index matching equality selection:
(height(𝐼) + 1) + 1

• Clustered index I matching selection with selectivity sel :
(#pages (𝐼) + #pages (𝑅)) ∗ sel

• Non-clustered index I matching selection:
(#pages(𝐼) + #tuples(𝑅)) ∗ sel

select name from movies
where rating = 9;

sel =
1

keys I =
1
10 ;

#pages R = 500;
#pages I = 50;
#tuples R = 50000

Access methods costs for movies 𝑹 with index 𝑰 on rating
• Heap file seq scan:

#pages R = 500

• Clustered index I matching selection with selectivity sel :

#pages 𝐼 + #pages 𝑅 ∗ sel = 50 + 500 ∗
1
10 = 55

• Non-clustered index I matching selection:

#pages 𝐼 + #tuples 𝑅 ∗ sel = 50 + 50000 ∗
1
10 = 5005

An Example

Induction case: cost of 𝑛 = 𝑘 + 1 relation plans

For each subset of relations, keep:
• cheapest plan overall

Enumerate “relevant” left-deep plans over 𝑛 = 𝑘 + 1
relations in 𝑘 + 1 passes
• Pass 1 (Base Case): Find best plan for each single relation
• Pass 𝑘 + 1 (Inductive Step): Find best way to join result of

a 𝑘-relation plan (as outer) to the 𝑘 + 1th relation. Assumption: Optimal result has
optimal substructure

The best left-deep plan is composed of best decisions
on the subplans
The best for joining R, S, T is one of these 3:
• (The best plan for joining R,S) ⨝T
• (The best plan for joining T, S) ⨝ R
• (The best plan for joining R, T) ⨝ S

a wrinkle

Induction case: cost of 𝑛 = 𝑘 + 1 relation plans

For each subset of relations, keep:
• cheapest plan overall

Enumerate “relevant” left-deep plans over 𝑛 = 𝑘 + 1
relations in 𝑘 + 1 passes
• Pass 1 (Base Case): Find best plan for each single relation
• Pass 𝑘 + 1 (Inductive Step): Find best way to join result of

a 𝑘-relation plan (as outer) to the 𝑘 + 1th relation.
What makes an order interesting?

An intermediate result has an “interesting order” if it
is sorted by anything we can use later in the query
• ORDER BY attributes
• GROUP BY attributes
• Join attributes of potential subsequent merge joins• cheapest plan overall for each “interesting order”

Enumerating plans – the System R/Selinger way

Divide query into parts
Part 1: Dynamic Programming for select-project-join (SPJ).
• Avoid cross-products – consider a 𝑘 + 1 join/product with a

𝑘-relation plan if:
• There is a join condition
• There are no more where clause predicates

Part 2: Order By, Group BY, Aggregation
• Might get an “interestingly ordered” plan
• Or add additional sort/hash operator

Query plan search even
with pruning is still 𝑂(𝑒!)

Why learn more about optimizers?

• There is a lot more to learn: not the whole truth, but it’s a good foundation:
• The Postgres DP-optimizer also considers bushy plans!
• Many other techniques: genetic optimizer, RL-optimizers, etc.
• Still an active field: It’s a hard problem!

• Better queries or better DBMS tuning
• Why did the optimizer choose this terrible plan?
• How can I help it to select a better one?

• A good perspective for many CS problems
• Many problems benefit from a declarative/constrained specification and an optimizer to

determine the best implementation

