Query Optimizers

	Abstraction	Concrete Formulation	Challenges	The Selinger Solution
Plan Space	What are all the possible plans to consider?	How to enumerate the space?Relational EquivalencesPhysical Equivalences	Massive Space! Catalan number $C_n \approx 4^n$ is the number of full binary trees with $n + 1$ base tables; n joins $\approx 4^n$ plans!	Prune (Heuristics)Avoid plans with cartesian productsConsider only left-deep join trees
Cost Estimation	How to compare two plans? Which plan is better?	What is the cost of a plan?	How to estimate the cost of a plan without executing it?	Update statistics periodically in a catalogUse crude but practical formulaeSelectivity to estimate intermediate results
Search Strategy	How do we find the lowest-cost plan?	How to search efficiently without full enumeration?	Structure search to avoid sub- optimal plan spaces.	Use <i>Dynamic Programming</i> + maintain "interesting orders" • Assume principle of optimality

The Dimensions of Query Optimization

Plan Space

Plan	What are all the	How to enumerate the	Massive Space! n	Prune (Heuristics)
Space	possible plans to consider?	space?Relational Equivalences	joins $pprox 4^n$ plans!	Avoid plans with cross productsConsider only left-deep join trees
	COnsiders	 Physical Equivalences 		Consider only left-deep join trees

Selections

Cascade Reorder

 $\sigma_{c_1 \wedge c_2 \wedge \dots \wedge c_k}(R) \equiv \sigma_{c_1} \left(\sigma_{c_2} \left(\dots \left(\sigma_{c_k}(R) \right) \dots \right) \right)$ $\sigma_{c_1}\left(\sigma_{c_2}(R)\right) \equiv \sigma_{c_2}\left(\sigma_{c_1}(R)\right)$

Projections

Cascade
$$\pi_{\mathbb{A}_1}(R) \equiv \pi_{\mathbb{A}_1}\left(\pi_{\mathbb{A}_2}\left(\dots\left(\pi_{\mathbb{A}_k}(R)\right)\dots\right)\right)$$
, if $\mathbb{A}_1 \subseteq \dots \subseteq \mathbb{A}_k$

Joins & Cross-products

Commutative

 $R \times S \equiv S \times R$ $R \bowtie_{x=x} S \equiv S \bowtie_{x=x} R$

Associative

 $R \times (S \times T) \equiv (R \times S) \times T$ $R \bowtie_{x=x} (S \bowtie_{x=x} T) \equiv (R \bowtie_{x=x} S) \bowtie_{x=x} T$

WARNING!			
S doesn't have b!			
We lost b=b!			
We replaced a join with a product!			

Relational Equivalences

BNLJ

Relational Equivalences - Join Pruning Heuristics

of permutations: *n*!

How many left-deep trees?

Plan	What are all the	How to enumerate the	Massive Space! n	Prune (Heuristics)
Space	possible plans to consider?	space?Relational Equivalences	joins $pprox 4^n$ plans!	Avoid plans with cross productsConsider only left-deep join trees
		Physical Equivalences		/ / / /

Base table access with selections and projections

- Heap scan
- Index scan

Equijoins

- Page Nested Loop
- Block Nested Loop
- Index Nested Loop
- Sort-Merge Join
- Grace Hash Join

Theta-Joins

Block Nested Loop

Physical Equivalences

Cost Estimation

<i>Estimation</i> two plans? Which cost of a of a plan without Us	pdate statistics periodically in a catalog lse crude but practical formulae Selectivity to estimate intermediate results
---	--

#IO + CPU-factor * #tuples

Cost of each operator in plan

- IO cost of sequential scan, index scan, joins, etc., when we know input size
- Catalog keeps track of
 - Base table size (for leaf operators)
 - Index sizes

Estimate result size for each operator

- Operator output is downstream operator's input size
- For selections, and joins, estimate based on how much a selection condition reduces the size of the input table: *Selectivity*.

Cost Estimation

Statistic	Meaning
tuples	# of tuples in a table (cardinality)
pages	# of disk pages in a table
$Low(A_1,, A_n)$	min value in a column A_i
High(<i>A</i> ₁ , , <i>A_n</i>)	max value in a column A_i
Keys(<i>A</i> ₁ ,, <i>A_n</i>)	# of distinct values in a column A_i
index_height(I_1, \dots, I_k)	the height of an index I_i
index_pages(I_1, \dots, I_k)	# of disk pages in an index I_i

- Catalogs updated periodically.
 - Too expensive to do on every update
 - Crude estimates anyway!
- Modern systems keep finer-grained info on the distribution of values (e.g. histograms, sketches, etc.)

ANALYZE tbl;
select * from pg_stats where tablename = 'R'

Statistics and Catalogs

se	lect	* -	From
R,	S, .		where
p1	AND	p2	•••

- Maximum result size: product of input sizes (think $R \times S \times \cdots$)
- Each term p_1, \ldots, p_n reduces the input by a factor
 - Reduction Factor = *Selectivity* = |Output|/|Input|
 - Result size = Maximum result size * Selectivity
- Simplifying assumptions
 - *Uniformity*: all values in a table are uniformly distributed
 - Independence: predicates are independent
- Selectivity ~ Probability

Result Size Estimation and Selectivity

select * from R	
where $A = 3527;$	

Equality keys(A) = 100 $sel = \frac{1}{keys(A)} = 0.01$

select * from R
where A > 3500;

Inequality Low(A) = 3000; High(A) = 4000; $sel = \frac{High(A) - v}{High(A) - Low(A) + 1} \approx 0.5$ (Uniformity)

(Uniformity)

select * from R
where $A = 3527$
AND $B = 20;$

Conjunction keys(A) = 100; keys(B) = 10 $sel = \frac{1}{keys(A)} \times \frac{1}{keys(B)} = 0.001$

(Independence)

Selectivity by example

select * from R
where A = 3527
OR B = 20;

Disjunction (Don't Double Count!)

$$keys(A) = 100; keys(B) = 10$$

$$sel = \frac{1}{keys(A)} + \frac{1}{keys(B)} - \frac{1}{keys(A)} \times \frac{1}{keys(B)} = 0.109$$
(Independence)

(Independence)

select * from R
where B = C;

Column Equality

 $keys(B) = 10 = \{a, b, c, d, e, f, g, h, i, j\};\\keys(C) = 2 = \{a, b\}$

$$sel = sel(B = a \land C = a) + sel(B = b \land C = b) + sel(B = c \land C = c) + sel(B = d \land C = d) + \dots$$

$$\operatorname{sel} = \frac{1}{2} * \frac{1}{10} + \frac{1}{2} * \frac{1}{10} + 0 * \frac{1}{10} + 0 * \frac{1}{10} + \dots$$

$$\operatorname{sel} = \frac{1}{10} = \frac{1}{\max(\operatorname{keys}(B), \operatorname{keys}(C))}$$

Selectivity by example

Join Selectivity

What if we don't have any estimates? I/10 is the Selinger way

Selectivity by example

```
32
          /* default selectivity estimate for equalities such as "A = b" */
      33
          #define DEFAULT_EQ_SEL 0.005
      34
      35
          /* default selectivity estimate for inequalities such as "A < b" */</pre>
      36
          37
      38
          /* default selectivity estimate for range inequalities "A > b AND A < c" */</pre>
      39
      40
          #define DEFAULT RANGE INEQ SEL 0.005
      41
      42
          /* default selectivity estimate for multirange inequalities "A > b AND A < c" */</pre>
      43
          #define DEFAULT MULTIRANGE INEQ SEL 0.005
      44
      45
          /* default selectivity estimate for pattern-match operators such as LIKE */
          #define DEFAULT MATCH SEL
      46
                                    0.005
      47
          /* default selectivity estimate for other matching operators */
      48
          #define DEFAULT MATCHING SEL
                                        0.010
      49
      50
          /* default number of distinct values in a table */
      51
          #define DEFAULT_NUM_DISTINCT 200
      52
Postgres Selectivities
```

Search Algorithm

Queries with σ , π , and Group By/Aggregation:

- estimate cost of every available access method (e.g. heap scan/index scan...)
- Choose/store the min cost and its plan
- Selects, projects (on-the-fly) so can be ignored
- Results pipelined into grouping/aggregation (hashing or sorting)

The Search Strategy: Dynamic Programming

Queries with \bowtie on 2 or more relations:

- estimate cost for every
 - Order of left-deep plan
 - Join algorithm used in each join

Access methods costs for relation R with index I

• Heap file seq scan:

#pages(R)

- Primary key B+ tree index matching equality selection: (height(I) + 1) + 1
- Clustered index I matching selection with selectivity sel : (#pages (I) + #pages (R)) * sel
- Non-clustered index I matching selection: (#pages(I) + #tuples(R)) * sel

Base case: cost of n = 1 relation plans

sel =
$$\frac{1}{\text{keys}(I)} = \frac{1}{10}$$
;
#pages(R) = 500;
#pages(I) = 50;
#tuples(R) = 50000

Access methods costs for movies R with index I on rating

• Heap file seq scan:

#pages(R) = 500

- Clustered index I matching selection with selectivity sel :

 (#pages (I) + #pages (R)) * sel = (50 + 500) * ¹/₁₀ = 55
- Non-clustered index I matching selection:

 $(\#pages(I) + \#tuples(R)) * sel = (50 + 50000) * \frac{1}{10} = 5005$

An Example

Enumerate "relevant" left-deep plans over n = k + 1relations in k + 1 passes

- Pass 1 (Base Case): Find best plan for each single relation
- Pass k + 1 (*Inductive Step*): Find best way to join result of a k-relation plan (as outer) to the k + 1th relation.

For each subset of relations, keep:

• cheapest plan overall

Assumption: Optimal result has optimal substructure

The best left-deep plan is composed of best decisions on the subplans

The best for joining R, S, T is one of these 3:

- (The best plan for joining R,S) ⋈ T
- (The best plan for joining T, S) ⋈ R
- (The best plan for joining R,T) \bowtie S

Induction case: cost of n = k + 1 relation plans

Enumerate "relevant" left-deep plans over n = k + 1relations in k + 1 passes

- Pass 1 (Base Case): Find best plan for each single relation
- Pass k + 1 (*Inductive Step*): Find best way to join result of a k-relation plan (as outer) to the k + 1th relation.

For each subset of relations, keep:

- cheapest plan overall
- cheapest plan overall for each *"interesting order"*

What makes an order interesting?

An intermediate result has an "interesting order" if it is *sorted* by anything we can use later in the query

- ORDER BY attributes
- GROUP BY attributes
- Join attributes of potential subsequent merge joins

Induction case: cost of n = k + 1 relation plans

Divide query into parts

Part 1: Dynamic Programming for select-project-join (SPJ).

- Avoid cross-products consider a k + 1 join/product with a k-relation plan if:
 - There is a join condition
 - There are no more where clause predicates

Part 2: Order By, Group BY, Aggregation

- Might get an "interestingly ordered" plan
- Or add additional sort/hash operator

Query plan search even with pruning is still $O(e^n)$

Enumerating plans - the System R/Selinger way

- There is a lot more to learn: not the whole truth, but it's a good foundation:
 - The Postgres DP-optimizer also considers bushy plans!
 - Many other techniques: genetic optimizer, RL-optimizers, etc.
 - Still an active field: It's a hard problem!
- Better queries or better DBMS tuning
 - Why did the optimizer choose this terrible plan?
 - How can I help it to select a better one?
- A good perspective for many CS problems
 - Many problems benefit from a declarative/constrained specification and an optimizer to determine the best implementation

Why learn more about optimizers?