
Recovery



Disk Space Management

Buffer Pool Management

Access Methods
Files & Index Management

Query Parsing & Optimization

Query Evaluation 
Relational Operators

SQL Client

SQL SQL
SQL SQL

SQL

SQL
SQLSQL

SQL SQL

Concurrency 
Control 
(Lock Manager)

Recovery 
& Logging

Two users change the 
same record at the same 
time.

The power fails in the 
middle of your update

Transaction 
Manager

Transaction – a sequence of one 
or more operations that perform 
some higher-level function

DBMS provide certain transaction guarantees (e.g.
ACID) that make the lives of programmers easy 😎

Recovery 
Manager
Provides Atomicity &
Durability



Atomicity: All actions in a transaction happen, or none happen.

Consistency: If the DB starts out consistent, it ends up consistent at the end of 
the Xact! (The DBMS aborts transactions that violate any Integrity Constraints)

Isolation: Execution of each Xact is isolated from that of others 

Durability: If a Xact commits, its effects persist.

ACID 
Transactions

Recovery 
Manager

• Ensures Atomicity & Durability
• Ensures Consistency by aborting/roll-backing transactions that violate 

integrity constraints



Why Do Transactions 
Abort?

Why Do Databases 
Crash? 

• Operator Error
• Trip over the power cord
• Type the wrong command

• Configuration Error
• Insufficient resources: disk space
• File permissions, etc.

• Software Failure
• DBMS bugs, security flaws, OS bugs

• Hardware Failure
• Media or Server

User/Application explicitly aborts
Integrity constraint violated
Deadlock
System failure prior to successful commit





Atomicity, Durability, Recovery & The 
Buffer



Buffer Pool
T1 T2

BEGIN
R(A)

A 5
B 4
C 3

Disk
Xact Schedule

A 5
B 4
C 3

Atomicity, Durability & Recovery

Keep in mind:

• A DBMS stores data on disk 
(non-volatile storage). 

• Durability means that the effects of 
committed transaction persist 
even when you lose everything on 
volatile storage.

• We do not write directly to disk: 
we write to copies of disk pages
in memory. Why?
• Performance



Buffer Pool
T1 T2

BEGIN
R(A)

A := 8
W(A)

A 8
B 4
C 3

Disk
Xact Schedule

A 5
B 4
C 3

Atomicity, Durability & Recovery

Keep in mind:

• A DBMS stores data on disk 
(non-volatile storage). 

• Durability means that the effects of 
committed transaction persist 
even when you lose everything on 
volatile storage.

• We do not write directly to disk: 
we write to copies of disk pages
in memory. Why?
• Performance



Buffer Pool
T1 T2

BEGIN
R(A)

A := 8
W(A)

BEGIN
R(B)

B := 2
W(B)

A 8
B 2
C 3

Disk
Xact Schedule

A 5
B 4
C 3

Atomicity, Durability & Recovery

Keep in mind:

• A DBMS stores data on disk 
(non-volatile storage). 

• Durability means that the effects of 
committed transaction persist 
even when you lose everything on 
volatile storage.

• We do not write directly to disk: 
we write to copies of disk pages
in memory. Why?
• Performance



Buffer Pool
T1 T2

BEGIN
R(A)

A := 8
W(A)

BEGIN
R(B)

B := 2
W(B)

COMMIT

A 8
B 2
C 3

Disk
Xact Schedule

A 5
B 4
C 3

Atomicity, Durability & Recovery

Keep in mind:

• A DBMS stores data on disk 
(non-volatile storage). 

• Durability means that the effects of 
committed transaction persist 
even when you lose everything on 
volatile storage.

• We do not write directly to disk: 
we write to copies of disk pages
in memory. Why?
• Performance Do we “FORCE” the page to 

disk?

Do we persist the effects of 
T1 that has not committed?

Atomicity

Durability

A 8
B 2
C 3



Buffer Pool
T1 T2

BEGIN
R(A)

A := 8
W(A)

BEGIN
R(B)

B := 2
W(B)

COMMIT
ABORT

A 8
B 2
C 3

Disk
Xact Schedule

Atomicity, Durability & Recovery

Keep in mind:

• A DBMS stores data on disk 
(non-volatile storage). 

• Durability means that the effects of 
committed transaction persist 
even when you lose everything on 
volatile storage.

• We do not write directly to disk: 
we write to copies of disk pages
in memory. Why?
• Performance Do we “FORCE” the page to 

disk?

Do we persist the effects of 
T1 that has not committed?

Atomicity

Durability

A 8
B 2
C 3

Crash

How do we
rollback T1?





Building a WAL



NO-STEAL STEAL

FORCE

NO-
FORCE

• Undo: Remove effects of an incomplete or aborted Xact 
• Redo: Redo the effects of a committed Xact for durability.

STEAL
An uncommitted Xact can overwrite the most recent committed 
value of an object on disk.

Dirty pages can be “stolen” by page replacement policy 

FORCE
All updates by a Xact are reflected on disk before the Xact can 
commit.

Buffer Policy & Recovery

Buffer Policy 

Recovery Operations

Assumptions

• Strict 2PL in effect



NO-STEAL STEAL

FORCE

NO-
FORCE

Buffer Pool
T1 T2

BEGIN
R(A)

A := 8
W(A)

BEGIN
R(B)

B := 2
W(B)

COMMIT

A 8
B 2
C 3

Disk
Xact Schedule

A 5
B 4
C 3

A 5
B 2
C 3

“FORCE” means we flush the 
changes of T2 to disk here!

“NO-STEAL” means 
we do not flush T1’s 

uncommitted 
changes to disk

A 5
B 2
C 3

COPY

ABORT

Simple Recovery
• No need to undo changes of an 

aborted Xact because the 
changes are not written to disk.

• No need to redo changes of a 
committed Xact because all the 
changes are guaranteed to be 
written to disk at commit time.

Still need a way to atomically write: 
• Atomic hardware writes
• Shadow paging

What if Xact can’t pin all its pages in the buffer? 

NO UNDO
NO REDO

Poor performance!
Random IOs at every 
commit.



NO-STEAL STEAL

FORCE

NO-
FORCE

NO UNDO
NO REDO

Buffer Policy & Recovery

NO FORCE
What if system crashes before dirty buffer page of a 
committed transaction is flushed to DB disk?
• Flush as little as possible, in a convenient place, prior to 

commit. 
• You can use this to REDO modifications after the crash!

STEAL 
What if a transaction that flushed updated pages to the DB 
disk aborts?
• Must retain old or before-update images of the flushed 

pages to UNDO any updates to them?
What if system crashes before Xact is finished?
• Consider these transactions as aborted! And you need 

to undo them.

UNDO
REDO

NO UNDO
REDO

UNDO
NO REDO



Logging

LSN Xid type object Before After
…

101 1 BEGIN - - -
102 1 UPDATE A 10 20
103 2 BEGIN - - -
104 2 UPDATE B 5 0
105 1 COMMIT

106 2 ABORT - - -
107 3 BEGIN - - -
108 3 UPDATE A 20 15
…

150 5 UPDATE C 100 150

Log

Log Tail
Still in memory

LOG: An ordered list of log records to allow REDO/UNDO for every update
• Sequential writes to log (on a separate disk).
• Minimal info written to log: pack multiple updates in a single log page.

Good performance

Allows STEAL/NO-FORCE



Write-Ahead Logging (WAL)

LSN Xid type object Before After
…

101 1 BEGIN - - -
102 1 UPDATE A 10 20
103 2 BEGIN - - -
104 2 UPDATE B 5 0
105 1 COMMIT

106 2 ABORT - - -
107 3 BEGIN - - -
108 3 UPDATE A 20 15
…

150 5 UPDATE C 100 150

pageLSN: 105

A 20
B 0
C 100

pageLSN: 090

D 5
E 4
F 3

Buffer Pool

pageLSN: 150 pageLSN: 090

A 15
B 5
C 150

D 9
E 9
F 9

Log

Log Tail
Still in memory

flushedLSN
Pointer to
last log 
record 
flushed to 
disk pageLSN pointer to log record of

most recent update

DB pages on disk

1. Must force the log record for an update before 
the corresponding data page gets to the DB disk.

2. Must force all log records for a Xact before 
commit.

+ UNDO gives 
Atomicity

+ REDO gives 
Durability

Before page i is 
flushed to DB: 
pageLSN(i) <= 
flushedLSN





ARIES



LSN Xid type pageID object Before After
000 1 BEGIN - - -
001 1 UPDATE 12 X 109 108

…

101 76 BEGIN - - -
102 63 UPDATE 8 A 10 20
103 77 BEGIN - - -
104 64 ABORT
105 63 COMMIT

106 77 UPDATE 10 D - -
107 78 BEGIN - - -
108 76 UPDATE 8 A 20 15
…

150 95 UPDATE 8 C 100 150

TIME

CRASH

NAÏVE 
RECOVERY

Start from an initial DB
Replay the log

Now move backwards undo 
each transaction that did not 
commit!

The whole log! Can this be
cheaper?
Initial Database! Can’t we just 
identify only the pages that are 
dirty and recover those?

How do we know which 
transactions to abort?
How do we find their 
instructions to rollback?



LSN Xid type pageID object Before After
000 1 BEGIN - - -
001 1 UPDATE 12 X 109 108

…

101 76 BEGIN - - -
102 63 UPDATE 8 A 10 20
103 77 BEGIN - - -
104 64 ABORT
105 63 COMMIT

CRASH

The whole log! Can this be
cheaper?
Initial Database! Can’t we just 
identify only the pages that are 
dirty and recover those?

How do we know which 
transactions to abort?
How do we find their 
instructions to rollback?

ARIES RECOVERY

MASTER RECORD
LAST CHECKPOINT LSN: 100

ANALYSIS

YES, Start analyzing the log 
from the last checkpoint to 
identify loser transactions & 
dirty pages

TIME

100 CHECKPOINT



How do we know which 
transactions to abort?
How do find their instructions 
to rollback?

ARIES RECOVERY

YES, Start analyzing the log 
from the last checkpoint to 
identify loser transactions & 
dirty pages

pageID recLSN
9 89
8 102

Transaction Table

Dirty Page Table

Xid status lastLSN
76 running 101
77 running 103
63 commit 105
64 abort 104

LSN Xid type pageID object Before After
000 1 BEGIN - - -
001 1 UPDATE 12 X 109 108

…

101 76 BEGIN - - -
102 63 UPDATE 8 A 10 20
103 77 BEGIN - - -
104 64 ABORT
105 63 COMMIT

CRASH

MASTER RECORD
LAST CHECKPOINT LSN: 100

ANALYSIS

TIME

pageID recLSN
9 89

Xid status lastLSN
63 running 87
64 running 99

ABORT ”running” 
and “abort” Xacts
in the Xact table

100 CHECKPOINT



How do find their instructions 
to rollback?

ARIES RECOVERY

pageID recLSN
9 99
8 102

Transaction Table

Dirty Page Table

Xid status lastLSN
76 running 101
77 running 103
63 commit 105
64 abort 104

LSN Xid type pageID object Before After
000 1 BEGIN - - -
001 1 UPDATE 12 X 109 108

…

101 76 BEGIN - - -
102 63 UPDATE 8 A 10 20
103 77 BEGIN - - -
104 64 ABORT
105 63 COMMIT

CRASH

MASTER RECORD
LAST CHECKPOINT LSN: 100

ANALYSIS

TIME

ABORT ”running” 
and “abort” Xacts
in the Xact table

YES, Start analyzing the log 
from the last checkpoint to 
identify loser transactions & 
dirty pages

How do we know which 
transactions to abort?

REDO

Repeat History --- all of it! Why?
It is too complex to do otherwise!

Start at the smallest recovery LSN.
Why?
First record of an update that may 
not have been flushed to disk!

089 58 UPDATE 9 G 150 120

100 CHECKPOINT



How do find their instructions 
to rollback?

ARIES RECOVERY

pageID recLSN
9 99
8 102

Transaction Table

Dirty Page Table

Xid status lastLSN
76 running 101
77 running 103
64 abort 104

LSN Xid type pageID object Before After
000 1 BEGIN - - -
001 1 UPDATE 12 X 109 108

…

101 76 BEGIN - - -
102 63 UPDATE 8 A 10 20
103 77 BEGIN - - -
104 64 ABORT
105 63 COMMIT

MASTER RECORD
LAST CHECKPOINT LSN: 100

ANALYSIS

REDO089 58 UPDATE 9 G 150 120

ABORT ”running” 
and “abort” Xacts
in the Xact table

UNDO

LSN
000
001

…

101
102
103
104
105

100 CHECKPOINT

prev
LSN

-
000

…

-
94
-

96
102

100

089 085

104 CLR; UNDO T64 10106 96

undo
Next

-
108

-
20
-

For each loser, perform simple transaction abort,
following prevLSN chains in the Log to rollback with 
before images. 

Log CLRs for every rollback 
and undoNext in CLR. Why? To 
avoid repeating undos!

10 106




