Schema Refinement

Problem: Redundancy

Replicated data + change = Trouble.

Solution: Functional Dependencies + Decomposition

- Leads to wasted storage
- Insert/delete/update anomalies

Functional Dependencies are a form of integrity constraints that help identify redundancy in schemas and help refine the database

Decompose or split a table into two tables in a way that eliminates duplicates but does not lose any of the information and preserves the integrity constraints

Given any two tuples, t_1 , t_2 in table R with attribute sets A, B if their A values are the same, then their B values must be the same.

$$\pi_{\mathbb{A}}t_1 = \pi_{\mathbb{A}}t_2 \implies \pi_{\mathbb{B}}t_1 = \pi_{\mathbb{B}}t_2$$

Functional Dependency

$$\mathbb{A} \to \mathbb{B}$$

$$\{A_1, \dots, A_n\} \to \{B_1, \dots, B_m\}$$

 $\pi_{\mathbb{A}}t_1 \neq \pi_{\mathbb{A}}t_3$

 $\pi_{\mathbb{R}}t_1=\pi_{\mathbb{R}}t_4$

	model	year	color	price	mileage
t_1	Ford Fission	2010	blue	20000	25
t_2	Ford Fission	2010	red	21000	25
t_3	Ford Fission	2020	blue	30000	30
t_4	Ford Passion	2000	purple	40000	25

$$\mathbb{A} \coloneqq \{model, year\}; \mathbb{B} \coloneqq \{mileage\} \qquad \mathbb{A} \to \mathbb{B}$$
$$\{model, year\} \to \{mileage\}$$

$$\pi_{\mathbb{A}}t_1=\pi_{\mathbb{A}}t_2$$
 means $\pi_{\mathbb{B}}t_1=\pi_{\mathbb{B}}t_2$: same mileage

says nothing about
$$\pi_{\mathbb{B}}t_1$$
, $\pi_{\mathbb{B}}t_3$: the mileage could be different or the same says nothing about $\pi_{\mathbb{A}}t_1$, $\pi_{\mathbb{A}}t_4$: the FD says nothing about model and year when mileage is different

• Hold true over all allowable instances not just ones that currently exist in the database

Where do FDs come from?

- Come from application semantics.
- Not learned from data, but you might learn suggestions for FDs
- Help us think about redundancies and their anomalies

The ER model doesn't capture FDs!

$$kid \rightarrow \{name, title, salary\}$$

$$title \rightarrow salary$$

Update Anomalies

 $title \rightarrow salary$

kid	name	title	salary
872	Azza Abouzied	senior	5,000
452	Hazem Ibrahim	junior	3,000
672	Miro Mannino	junior	3,000
981	Benjamin Mee	senior	5,000
666	Joe Exotic	junior	3,000
321	Jane Goodall	chief	10,000

Can we update Miro's salary?

No, it will be inconsistent with Hazem's and Joe's salaries who are also "junior" keepers

Deletion Anomalies

 $title \rightarrow salary$

	i e e e e e e e e e e e e e e e e e e e		
kid	name	title	salary
872	Azza Abouzied	senior	5,000
452	Hazem Ibrahim	junior	3,000
672	Miro Mannino	junior	3,000
981	Benjamin Mee	senior	5,000
666	Joe Exotic	junior	3,000
321	Jane Goodall	chief	10,000

Can we delete Jane Goodall?

We will lose all information on what the salary is for chief keepers!

Insertion Anomalies

 $title \rightarrow salary$

kid	name	title	salary
872	Azza Abouzied	senior	5,000
452	Hazem Ibrahim	junior	3,000
672	Miro Mannino	junior	3,000
981	Benjamin Mee	senior	5,000
666	Joe Exotic	junior	3,000
321	Jane Goodall	chief	10,000
209	lan Malcolm	intern	?

Can we insert a keeper with a title for which we don't know the salary?

Then you might invent a value without reference to the true rule!

Why are some functional dependencies problematic?

kid	name	title	salary	
872	Azza Abouzied	senior	5,000	
452	Hazem Ibrahim	junior	3,000	
672	Miro Mannino	junior	3,000	
981	Benjamin Mee	senior	5,000	
666	Joe Exotic	junior	3,000	
321	Jane Goodall	chief	10,000	

title is not a key so pairs of (title, salary) e.g. (senior, 5000) appear many times kid is a key, so each pair of (kid, salary) e.g. (872, 5000) appears exactly once

kid	name	title	salary
872	Azza Abouzied	senior	5,000
452	Hazem Ibrahim	junior	3,000
672	Miro Mannino	junior	3,000
981	Benjamin Mee	senior	5,000
666	Joe Exotic	junior	3,000
321	Jane Goodall	chief	10,000

kid	name	title
872	Azza Abouzied	senior
452	Hazem Ibrahim	junior
672	Miro Mannino	junior
981	Benjamin Mee	senior
666	Joe Exotic	junior
321	Jane Goodall	chief

title	salary			
senior	5,000			
junior	3,000			
intern	1,000			
chief	10,000			

Eliminate Redundancy by decomposing the relation along the problematic FDs!

Armstrong's Axioms

$$A_1 \rightarrow A_1$$

$$A_1 \to A_1$$

$$A_1, A_2, \dots, A_k \to A_i$$

Trivial

An attribute determines itself; A set of attributes determine any one of the attributes in the set

model, year, color \rightarrow year

$$\begin{array}{c} & \xrightarrow{\text{Split}} \\ A_1, A_2, \dots, A_n \longrightarrow B_1, B_2, \dots, B_k \\ & = \begin{bmatrix} A_1, A_2, \dots A_n \longrightarrow B_1 \\ A_1, A_2, \dots A_n \longrightarrow B_2 \\ \dots \\ A_1, A_2, \dots A_n \longrightarrow B_k \\ \end{array}$$

Split & Combine

- If a set of attributes A determines a set B, then A also determines every attribute within B.
- If a set of attributes $\mathbb A$ determines sets $\mathbb B$ and $\mathbb C$, then it also determines their union $\mathbb B \cup \mathbb C$

$$model, year, color \rightarrow price, mileage \Leftrightarrow \begin{bmatrix} model, year, color \rightarrow price \\ model, year, color \rightarrow mileage \end{bmatrix}$$

$$A_1, A_2, ..., A_n \to B_1, B_2, ..., B_m \\ B_1, B_2, ..., B_m \to C_1, C_2, ..., C_p \implies A_1, A_2, ..., A_n \to C_1, C_2, ..., C_p$$

If a set of attributes \mathbb{A} determines a set \mathbb{B} , and \mathbb{B} determines a set \mathbb{C} , then \mathbb{A} determines \mathbb{C}

Transitive

 $\begin{array}{l} \text{model, year, color} \longrightarrow \text{mileage} \\ \text{mileage} \longrightarrow \text{tax} \end{array} \Longrightarrow \text{model, year, color} \longrightarrow \text{tax} \end{array}$

Given this:

 F_1 : model, color, year \rightarrow price

 F_2 : model, year \rightarrow mileage

 F_3 : mileage \rightarrow tax

Can you derive this?

 $model, color, year \rightarrow price, mileage, tax$

 F_4 : model, year, color \rightarrow mileage, color

Trivial F_2 $A_1 \rightarrow A_1$

 F_5 : model, year, color \rightarrow mileage

Split F_4 $A_1, \dots, A_n \longrightarrow B_1, B_2 \Longleftrightarrow \begin{matrix} A_1, \dots, A_n \longrightarrow B_1 \\ A_1, \dots, A_n \longrightarrow B_2 \end{matrix}$

 F_6 : model, year, color \rightarrow tax

Transitivity F_3 F_5 $A_1, \dots, A_n \longrightarrow B_1, B_2 \Leftrightarrow A_1, \dots, A_n \longrightarrow B_1$ $A_1, \dots, A_n \longrightarrow B_2$

 $model, color, year \rightarrow model, year, price$

Combine F_1 F_5 F_6 $_1, ..., A_n \longrightarrow B_1, B_2 \Leftrightarrow A_1, ..., A_n \longrightarrow B_1$

Given this:

 F_1 : model, color, year \rightarrow price

 F_2 : model, year \rightarrow mileage

 F_3 : mileage \rightarrow tax

Can you derive this?

 $color, tax \rightarrow price$

Closures & Keys

Given a set of attributes $A_1, A_2, ..., A_n$ The *closure* $\{A_1, A_2, ..., A_n\}^+ \coloneqq \{B_1, ..., B_m\} \mid A_1, A_2, ..., A_n \longrightarrow B_i$

Given this:

 F_1 : model, color, year \rightarrow price

 F_2 : model, year \rightarrow mileage

 F_3 : mileage \rightarrow tax

Attribute Closure

What is? {model, color, year}+

{model, color, year, ...}

 $\{model, color, year, price, ...\}$ By F_1

 $\{model, color, year, price, mileage, ...\}$ By F_2

{model, color, year, price, mileage, tax} By Transitivity

 F_3

With closures, we can easily verify a functional dependency.

To check if
$$\mathbb{A} \to \mathbb{B}$$

Compute \mathbb{A}^+

Check if $\mathbb{B} \subset \mathbb{A}^+$

So what?

Given this:

 F_1 : model, color, year \rightarrow price

 F_2 : model, year \rightarrow mileage

 F_3 : mileage \rightarrow tax

Can you derive this?

 $color, tax \rightarrow price$

```
What is? \{color, tax\}^+ \{color, tax\} Trivial And that's it! Since price \notin \{color, tax\}^+ \{color, tax\} \not\rightarrow price
```

Superkey

Any set of attributes that functionally determine all attributes in a relation.

$${A_1, \dots A_k}^+ = R$$

Candidate Key

A superkey for which no strict subset is a superkey! A minimal superkey

 \mathbb{A}^+ is a candidate key iff $\forall \mathbb{A}' \subset \mathbb{A}$, $\mathbb{A}'^+ \neq R$

Primary Key

A candidate key for the relation.

Normalization *Boyce-Codd Normal Form*

Decomposition & Normal Forms

Decompose (defn): replace R by two or more relations $R_1, ..., R_n$ such that:

- $Attr(R_i) \subseteq Attr(R)$
- $\bigcup_i Attr(R_i) = Attr(R)$

What is a good decomposition?

GOALS

Is it Lossless?

Does it Eliminates Anomalies?

Is it Dependency Preserving?

2) When to stop decomposing?

NORMAL FORMS

If a relation is a normal form, we know it avoids certain/reduces certain problems

e.g. *BCNF* ensures a lossless decomposition that eliminates redundancy

3 How to decompose?

Keepers

kid	name	title	salary
872	Azza Abouzied	senior	5,000
452	Hazem Ibrahim	junior	3,000
672	Miro Mannino	junior	3,000
981	Benjamin Mee	senior	5,000
666	Joe Exotic	junior	3,000
321	Jane Goodall	chief	10,000

junior

chief

Keepers'

666

321

kidnametitle872Azza Abouziedsenior452Hazem Ibrahimjunior672Miro Manninojunior981Benjamin Meesenior

Salary

title	salary			
senior	5,000			
junior	3,000			
intern	1,000			
chief	10,000			
1	7			

 $title \rightarrow salary$

 $kid \rightarrow \{name, title\}$

Joe Exotic

Jane Goodall

Is this a good decomposition?

Is it Lossless?

• Yes! Keepers = Keepers' ⋈ Salary

Does it Eliminate Anomalies?

Yes! No redundancies

Is it Dependency Preserving?

Yes!

GOALS

$$(F_{\text{Keepers}'} \cup F_{\text{Salary}})^+ = F_{\text{Keepers}}^+$$

Lossy decomposition ...

... but not dependency preserving $[C \rightarrow B]^+ \neq [A \rightarrow B, C \rightarrow B]^+$

Is it a good form?

GOALS

Is Lossless

Eliminates Anomalies

Boyce-Codd Normal Form (BCNF)

But it may not always be dependency preserving

2 When to stop decomposing?

s R in BCNF?

A relation R is in BCNF if $\{A_1, ..., A_n\} \rightarrow B$ is a non-trivial dependency in R (i.e. $B \neq A_i$), then $\{A_1, ..., A_n\}$ is a superkey for R

Another way to think of it: For all sets of attributes \mathbb{A} of R, either $\mathbb{A} = \mathbb{A}^+$ or $\mathbb{A}^+ = \{all attributes of <math>R\}$

BCNF = no "problematic" FDs

How to decompose? The LHS of a "bad" FD that is not a superkey of R BCNFy(R): find X s.t. $X \neq X^+ \neq [all attributes]$ if (not found) then R is in BCNF else Let $Y = X^+ - X$ Decompose Let $Z = [all attributes] - X^+$ along the "bad"-Let $R_1 = (X \cup Y)$ FD Let $R_2 = (X \cup Z)$

BCNFy(R_1)

BCNFy(R₂)

Recursively

decompose

Boyce-Codd Normal Form (BCNF) Functional dependencies in R

 F_1 id, sig → id, name, major, sig, dues F_2 id → name, major F_3 sig → dues

BCNF Example Decomposition

R (id, name, major, sig, dues)

