
The insides of a DBMS

THE DBMS

SQL Client

How is a SQL
query executed?

Parse, Check,
Rewrite, Optimize

animals

𝜎{"#$%&, "($")*}

𝜋{,"-$}

enclosureslivesIn

⋈

⋈
Disk Space Management

Buffer Pool Management

Access Methods
Files & Index Management

Query Parsing & Optimization

Query Evaluation
Relational Operators

SQL Client

Parse, Check,
Rewrite, Optimize

𝜎{"($")*}

⋈

𝜎{"#$%&}

animals

𝜋{,"-$}

enclosures

⋈

livesIn

index
scan

nested
loops

seq scan seq scan

Disk Space Management

Buffer Pool Management

Access Methods
Files & Index Management

Query Parsing & Optimization

Query Evaluation
Relational Operators

SQL Client

(De)allocate, read, write pages on one
or more storage device(s)

Manage the transfer of pages into RAM to
provide the illusion of operating in memory

Organize tables and records as groups of
pages in a logical file

Disk Space Management

Buffer Pool Management

Access Methods
Files & Index Management

Query Parsing & Optimization

Query Evaluation
Relational Operators

SQL Client

animals enclosures

⋈

livesIn

index
scan

nested
loops

seq scan seq scan

𝜎{"($")*}𝜎{"#$%&}

Client-Server

The DBMS Architecture

• A SQL client for applications and a server DBMS

• Manages complexity: each layer abstracts and hides complexity
from the layer above so it can focus on one thing!

• Disks (HDDs) are slow and mechanical.

• No byte-level addressing or pointer-dereferencing. Disk
access is block-level or page-level.

• An API to read page from disk to memory or write a page
from memory to disk.

Designed for disks

Layered

Disk Space Management

Disk Characteristics
Head

Platter

Track
Rotation

Seek

Sector

Time to retrieve a page depends on location:
seek (1-10ms) +
rotational delays (10ms).

Disk bandwidth is high: 100MB/s < page/1ms.

Arrange pages of a files sequentially! (next
block on same track, same cylinder, adjacent
cylinder).

Registers

L1, L2 Cache

L3 Cache Main Memory Disk Tape

Your brain

This room

This campus

Dubai

Pluto

Andromeda

1 ns 2 ns 10 ns 100 ns 106 ns (1ms) 109 ns (1s)

1min 10min 1.5 hours 2 years 2000 years
Jim Gray’s Analogy

Disk & Storage Hierarchy Implications

Read and write large chunks
of sequential bytes

• Reads and updates occur at the block level - a block has
multiple records of many fields

• Typical Block/Page size (unit of transfer to and from
storage) nowadays is 64-128 KB (postgres 8KB)

• “Next” disk block is fastest (no seek delays)
• Spatial locality: place things that are accessed together

close to each other spatially

• Predict future access patterns & Prefetch blocks
• Cache popular blocks
• Buffer writes to sequential blocks

Sequential Access is fast

Amortize read and write costs

• allocate/de-allocate a
(sequence of) page(s)

• read/write a page

Disk Space Manager
Deal directly with the storage device
• Better control over where you place blocks

and when you retrieve them

• What happens if the disk changes?

Run over the OS-provided File System
• Easier to implement & portable

• Allocate single large “contiguous” file;
assume sequential access is fast. Most FS
optimize disk layout for sequential access

AP
I

IM
PL

EM
EN

TA
IO

N
OP

TI
ON

S

A single physical file can be stripped with
pages across multiple devices each managed
by a file system. The Disk Space manager
provides the illusion of single big physical file
with a unified getPage().

Database Files

How are the contents of a DB
file physically represented?

What are different file
organizations?

How to choose the appropriate
file organization?

A database file is a collection of pages,
each containing a collection of records.

Unordered, Sorted, Indexed, …

Cost models and cost analysis

Main Questions

Layouts

Record Layouts

Record Layout
A sequence of bytes that are interpreted by
the DBMS into attribute types and values.

1. Fast access to fields

2. Compact representation
in both memory and disk

3. Handling both fixed and
variable-length fields

DE
SI

GN
 G

OA
LS

Record Layout
Fixed Length Attributes

The catalog stores the schema; data type gives
you length of each attribute.

The order of fields is often the same order of
the table definition

To get the value of attribute Y:

Header W X Y Z

Base address: B Address(Y) = B + L(W)+ L(X)

L(W) L(X)

• Arithmetic is very fast!
• Byte representation on disk and in

memory are identical
• Compact

Record Layout
Variable Length Attributes

Header A B C D$ $ $ $

Header A B C DS1 S2 S3 S4 E

Option 1: Use Delimiters

Option 2: Use an array of field offsets

• Requires a full record scan to access each field
• What if the fields contain the delimiter?

• Direct access to fields
• No need to escape delimiters

Record Layout
Fixed + Variable Length Attributes

• Direct access to fixed-length fields
• Compact representation, only

pointers for variable-length fields
• No need to escape delimiters

… But what about nulls?

jumpy2 89.6 150F

jumpy cat 2 89.6 150F

smallint real smallintcharvarchar varchar
2 bytes 4 bytes 2 bytes1 byteVariable-length Variable-length

catHeader S2 ES1

Record Layout
Handling Nulls

Option 1: Null bit map

Header A B C D1 0 0 0

Header A B C DS1 S2 S3 S4 E

Option 2: Pointers can handle this naturally

Record Layout

What goes in the header?

Header contains meta data:
• Does not contain schema
• Bit map for NULL values for

fixed-length attributes
• Visibility information (revisit later

in concurrency control)

Header Attribute Data

What if we can’t fit a record in a page?

A postgres page ~8KB
• Generally, a tuple cannot exceed the

size of a single page.
• Use separate overflow storage page

and store pointer to overflow page
for field value

• Store pointers to external files (no
durability or transaction guarantees)

Page Layouts

Page Layout
A page has records of the same relation.
Each record is uniquely identified by a rid

1. Fast access to records
• By rid (page id, location in page)

2. Compact representation in
both memory and disk

3. Efficient handling of record
deletes/inserts

4. Handles fragmentation

DE
SI

GN
 G

OA
LS

Page Layout

Header contains meta data:
• Number of records
• Free space
• Maybe a next/last pointer
• Bitmaps, Slot Table
• Page size
• Checksum
• DBMS version
• Visibility information
• Compression details

Header

Data

What goes in the header?

Option 1: Packed
Fixed-Length Format

Pack records densely

rid = (page id, “location in page”) =
(page id, slot #)

Insertions
• Just append

Deletions
• Re-arrange & update rids
• What about other files (e.g. indexes)

that may reference rids?

Header

Num of tuples = N

….

Slot 1

Slot N

Option 2: Unpacked
Fixed-Length Format

Bitmap denotes “slots” with records

rid = (page id, slot #)

Insertions
• Find first empty slot

Deletions
• Clear bit

Header

1

…

0 1 … 0 1 00
Slot 1

Slot M

Slot
Bitmap

Option 3: Slotted Pages

Header

5

slot 4

slot 1

16 16 30 12 16 *
Slot

Directory

slot 2

slot 5

slot 3

Slot
Count

Free space
pointer

Each entry in slot array:
Length of record +
Pointer to location

Record rid(page 5, slot 4)
is 12 bytes

Each entry in the slot
directory is a pointer to a
record’s beginning and its
length.

Record id = page id, slot
location in directory

Header

5

slot 1

16 16 30 16 *

slot 2

slot 5

slot 3

Slot
Count

Delete
rid(page 5, slot 4)

Header

5

slot 4

slot 1

16 16 30 12 16 *

slot 2

slot 5

slot 3

Set slot directory entry to null
Doesn’t impact other records

Delete a record

slot 4

Header

5

slot 1

16 16 30 32 16 *

slot 2

slot 5

slot 3

Slot
Count

Header

5

slot 1

16 16 30 16 *

slot 2

slot 5

slot 3

Insert 32 byte
record

New record has rid
(page 5, slot 4)

Insert a record

Place record in free space
Reuse available free slots
Update the free space pointer

slot 4

Header

5

slot 1

16 16 30 32 16 *

slot 2

slot 5

slot 3

Slot
Count

Slot
Count

slot 4

Header

6

slot 1

16 16 30 32 16 6

slot 2

slot 5

slot 3

*

6

Insert 6 byte
record New record has rid

(page 5, slot 6)

Insert a record – grow slots

Place record in free space
Create new slot at the end & update slot count
Update the free space pointer

slot 4

Header

6

slot 1

16 16 30 32 16 6

slot 2

slot 5

slot 3

*

6 slot 4

Header

6 16 16 30 32 16 6 *

6

slot 4

slot 5slot 3

slot 1slot 2

Reorganize Record location in
page changes but

not rids

Reorganize page

Pays off to allow some degree of fragmentation
Compact records on the page but you don’t need to change a record’s slot #!

File Organizations

A Database File

A Database (Logical) File
A collection of pages, each containing a collection of records. A
file can be a table or an index.

Could span multiple physical OS files or even devices.

• Insert, delete or modify record
• Fetch by record id (page #, slot#)
• Scan all records (with filter condition)

Supports an API for

A Heap File

Collection of records in no specific order

Can grow or shrink by allocating or deallocating page.

Supports record level operations by keeping track of:
• the pages in a file
• the free space on pages
• the records on a page

The catalog keeps track of a heap’s header page ID
and heap file name (i.e., the mapping from a table to
the heap file)

Header Page

Header

Data

Header

Data

Header

Data

Free Page List

Header

Data

Header

Data

Header

Data

Data Page List

Option 1: Linked
Listed Heap File
How do I find page 5? How do I find enough
space for a record of length x bytes?

To find a specific page,
you must sequentially
scan the lists.

Each page keeps track of
the number of free slots
in itself.

Page Directory

Header

Data

Header

Data

Header

Data

Option 2: Heap File
Page Directory

One more level of indirection: Use
the page-directory to find the location
of page p.

Each directory entry also includes
additional information like # of free
bytes/slots in a page.

Cache page directory!

Header

5

slot 4

slot 1

16 16 30 12 16 *

slot 2

slot 5

slot 3

Page Directory

jumpy2 89.6 150F catHeader S2 ES1

name species age sex weight height

jumpy cat 2 F 89.6 150

happy orangutan 8 F 90.0 161

spiky porcupine 1 M 16.5 40

gloomy sloth 3 M 18.7 60

File

Slotted
Pages

Heap Page Directory

Record

jumpy cat 2 F 89.6 150

All together now

Variable-length
Record Layout

Unordered Heap Files
Records placed arbitrarily across pages

Clustered Heap Files
Records and pages are grouped

Sorted Files
Pages and records are in sorted order

Index Files
B+ Trees, Linear Hashing, …
May contain records or point to records in other files

Other Organizations

How to choose the
best file organization?

Identify your access
patterns/workloads

Create a model to quantify
your trade-offs

Is it a read-mostly workload, or write-heavy? Are
there many equality-searches? range-searches?
full scans?

• Estimate in a principled way the costs.
Crude & insightful (not complex & perfect)

• Identify assumptions upfront

How to choose the best file organization?

Heap File vs. Sorted

Heap File Sorted
Scan

Equality-search
Range-search
Single Record

Insert
Single Record

Delete

Identify your access
patterns/workloads

Create a model to quantify
your trade-offs

Heap File vs. Sorted

Identify your access
patterns/workloads

Create a model to quantify
your trade-offs

Estimate in a principled way the costs.
Crude & insightful (not complex & perfect)
• Time to read or write a block/page (T)
• Number of blocks/pages (B)
• Number of records per page (R)
• Conduct average-case analysis

Identify assumptions upfront
• Heap files append inserts
• Sorted files are packed (always compact

after deletion)
• Sorted files are sorted by search key
• Ignore sequential vs. random IO, in-

memory costs, …

Cost of a scan

Heap File Sorted

Scan 𝐵 × 𝑇 𝐵 × 𝑇

Equality-search

Range-search

Single Record Insert

Single Record Delete

Cost of an equality-search

Heap File Sorted

Scan 𝐵 × 𝑇 𝐵 × 𝑇

Equality-search Is it 𝐵 × 𝑇 also? Does sorting help?

Range-search

Single Record Insert

Single Record Delete

Cost of an equality-search – Heap File

What is the probability 𝑃(𝑖) that I
find the record with the search
key on page 𝑖?

Assume uniformly random keys

𝑃 𝑖 =
1
𝐵

How many pages will I visit on
average to hit the search key?

+
!"#

$

𝑖×𝑃 𝑖 =+
!"#

$

𝑖
1
𝐵
≈
𝐵
2

If you start from beginning to end
scanning all pages, at each page there is
1/B chance that it has the search key, and
you stop the scan.

Cost of an equality-search – Sorted File

Do a binary search on the sorted file.
𝑃(𝑖) IOs	so	

far
1
𝐵

1

1
𝐵/2 =

2
𝐵

2

1
𝐵/4 =

4
𝐵

3

1
𝐵/8 =

8
𝐵

4

2!"#

𝐵
𝑖

2$%&! '"#

𝐵
log(𝐵!

!"#

$%&! '

𝑖
2!(#

𝐵
= log) 𝐵 −

𝐵 − 1
𝐵

≈ log) 𝐵

Cost of an equality-search

Heap File Sorted

Scan 𝐵 × 𝑇 𝐵 × 𝑇

Equality-search .𝐵 2× 𝑇 log4𝐵 × 𝑇

Range-search

Single Record Insert

Single Record Delete

Cost of a range-search - key in [x, y]

Heap File Sorted

Scan 𝐵 × 𝑇 𝐵 × 𝑇

Equality-search .𝐵 2× 𝑇 log4𝐵 × 𝑇

Range-search Do we find every value in the
range?

Find smallest value & scan
right

Single Record Insert

Single Record Delete

Cost of a range-search

Heap File Sorted

Scan 𝐵 × 𝑇 𝐵 × 𝑇

Equality-search .𝐵 2× 𝑇 log4𝐵 × 𝑇

Range-search 𝐵 × 𝑇 log4𝐵 + #pages × 𝑇

Single Record Insert

Single Record Delete

Cost of an insert

Heap File Sorted

Scan 𝐵 × 𝑇 𝐵 × 𝑇

Equality-search .𝐵 2× 𝑇 log4𝐵 × 𝑇

Range-search 𝐵 × 𝑇 log4𝐵 + #pages × 𝑇

Single Record Insert Append at the end Find, insert, shift

Single Record Delete

Cost of an insert

Heap File Sorted

Scan 𝐵 × 𝑇 𝐵 × 𝑇

Equality-search .𝐵 2× 𝑇 log4𝐵 × 𝑇

Range-search 𝐵 × 𝑇 log4𝐵 + #pages × 𝑇

Single Record Insert 2𝑇 log4𝐵 + 2 .𝐵 2 ×𝑇

Single Record Delete

Cost of a delete

Heap File Sorted

Scan 𝐵 × 𝑇 𝐵 × 𝑇

Equality-search .𝐵 2× 𝑇 log4𝐵 × 𝑇

Range-search 𝐵 × 𝑇 log4𝐵 + #pages × 𝑇

Single Record Insert 2𝑇 log4𝐵 + 𝐵 ×𝑇

Single Record Delete Find, delete, write Find, delete, shift

Cost of a delete

Heap File Sorted

Scan 𝐵 × 𝑇 𝐵 × 𝑇

Equality-search .𝐵 2× 𝑇 log4𝐵 × 𝑇

Range-search 𝐵 × 𝑇 log4𝐵 + #pages × 𝑇

Single Record Insert 2𝑇 log4𝐵 + 𝐵 ×𝑇

Single Record Delete .𝐵 2 + 1 × 𝑇 log4𝐵 + 𝐵 ×𝑇

Heap File vs. Sorted

Heap File Sorted
Scan 𝐵 × 𝑇 𝐵 × 𝑇

Equality-search .𝐵 2× 𝑇 log) 𝐵 × 𝑇

Range-search 𝐵 × 𝑇 log) 𝐵 + #pages × 𝑇

Single Record Insert 2𝑇 log) 𝐵 + 𝐵 ×𝑇

Single Record Delete .𝐵 2 + 1 × 𝑇 log) 𝐵 + 𝐵 ×𝑇

A workload may have a different distribution of each of these tasks!
What happens when we change some of our assumptions?
We can do better with indexes

Row Stores vs. Column Stores

Row Stores

Column Stores

When to use Row-Stores?

TH
E

GO
OD • Good performance for writes (inserts, updates, deletes) –

transactional workloads

• Good for queries that need the entire tuple.

TH
E

BA
D • Not ideal for scanning large portions of only

subsets of a table's attributes.

When to use Column-Stores?

• Ideal for analytical workloads where read-only queries perform
large scans over a subset of the table's attributes.

• Better data compression
• Easy schema expansion: add a new column doesn't entail rewrite
• Same column can be replicated with different orders

• Slow for inserts, updates, deletes --- tuple stitching or
joining overhead.

TH
E

GO
OD

TH
E

BA
D

