
What is a database index?

What is a
database index?

A copy of a subset of a table’s attributes that are
organized and/or sorted for efficient access.

The DBMS keeps the table and the index
logically in sync & determines which index(es) to
use for a query if any.

Why not keep an index for every (subset of)
attribute(s)?
• Storage Overhead
• Maintenance Overhead

By-value Index
Record contents are stored in the leaves of the
index file. No need to follow pointers

By-reference (Secondary) Index
The leaves of the index file store <k, rid>.
• Use rid to lookup corresponding record in a

separate heap file.
• All postgres indexes are secondary!
• An optimization when we have multiple

records with the same search key is to store
<k, [list of rids]>

How do
indexes
provide access
to records?

Clustered Index: Heap file records
are kept mostly ordered according
to search keys in index.

Unclustered IndexClustered Index

Leaf Nodes
Data Pointers

Data Files

Sorted Records

Clustered vs. Unclustered Indexes

Consider :
1. Efficiency of range search
2. Compression potential
3. Maintenance cost
4. Storage Utility

B+ trees

An index improves the performance of
lookups and searches

Each index makes design trade-offs between
• Lookup & search performance,
• Index size, and
• Index-update performance.

Tree indexes generally have logarithmic
lookup and search O(log(n)) and linear size
complexity O(n) vs. hash indexes which have
O(1) lookups but do not support range
searches.

Why tree
indexes?

Self-balancing tree data structures.
• Leaves are at the same height even with

insertions and deletions.

Multi-way search: Generalization of a binary search
tree in that a node can have more than two children.

• Why more than two children? Disk access is at the
block level.

• Why do we design indexes to be on disk- rather
than memory resident? An index can have as many
entries in its leaves as the records it speeds up
access to.

What properties
should a DB tree
index have?
B+ trees are commonly
used for these
properties!

Equality search
• key = x

Range search
• key <, <=, >, >= x
• key BETWEEN x, y

Multi-column search
• key1 = x AND key2 >=y

What do B+
trees support?

A multi-column index on attributes A, B, C will lexicographically
order the search key columns. So, it first orders by A, then for
items that match on A, it will order by B and then for matches in
B, it will order by C.

B+ trees &
Multi-column
search

handle follows likes

@azza 300 4000
@spock 400 5200
@data 500 1400
@kirk 550 2080
@uhara 800 4000

INDEX ON (follows, likes)

follows = 300 AND likes = 4000

Lookup and scan in
lexicographic order

𝑘! = 𝑥!
∧ 𝑘" = 𝑥"
∧ ⋯

∧ 𝑘# = 𝑥#
∧ 𝑘#$! >,< 𝑥#$!

A multi-column index on attributes A, B, C will lexicographically
order the search key columns. So, it first orders by A, then for
items that match on A, it will order by B and then for matches in
B, it will order by C.

B+ trees &
Multi-column
search

handle follows likes

@azza 300 4000
@spock 400 5200
@data 500 1400
@kirk 500 2080
@uhara 800 4000

INDEX ON (follows, likes)

follows = 500 AND likes > 2000

Lookup and scan in
lexicographic order

𝑘! = 𝑥!
∧ 𝑘" = 𝑥"
∧ ⋯

∧ 𝑘# = 𝑥#
∧ 𝑘#$! >,< 𝑥#$!

A multi-column index on attributes A, B, C will lexicographically
order the search key columns. So, it first orders by A, then for
items that match on A, it will order by B and then for matches in
B, it will order by C.

B+ trees &
Multi-column
search

handle follows likes

@azza 300 4000
@spock 400 5200
@data 500 1400
@kirk 500 2080
@uhara 800 4000

INDEX ON (follows, likes)

follows > 300 AND likes > 3000

Lookup and scan in
lexicographic order

𝑘! = 𝑥!
∧ 𝑘" = 𝑥"
∧ ⋯

∧ 𝑘# = 𝑥#
∧ 𝑘#$! >,< 𝑥#$!

A multi-column index on attributes A, B, C will lexicographically
order the search key columns. So, it first orders by A, then for
items that match on A, it will order by B and then for matches in
B, it will order by C.

B+ trees &
Multi-column
search

handle follows likes

@azza 300 4000
@spock 400 5200
@data 500 1400
@kirk 500 2080
@uhara 800 4000

INDEX ON (follows, likes)

follows > 400

Lookup and scan in
lexicographic order

𝑘! = 𝑥!
∧ 𝑘" = 𝑥"
∧ ⋯

∧ 𝑘# = 𝑥#
∧ 𝑘#$! >,< 𝑥#$!

A multi-column index on attributes A, B, C will lexicographically
order the search key columns. So, it first orders by A, then for
items that match on A, it will order by B and then for matches in
B, it will order by C.

B+ trees &
Multi-column
search

handle follows likes

@azza 300 4000
@spock 400 5200
@data 500 1400
@kirk 500 2080
@uhara 800 4000

INDEX ON (follows, likes)

likes = 4000

Lookup and scan in
lexicographic order

𝑘! = 𝑥!
∧ 𝑘" = 𝑥"
∧ ⋯

∧ 𝑘# = 𝑥#
∧ 𝑘#$! >,< 𝑥#$!

What
operations are
not supported
by B+ trees?

Search within a 2D polygon
• 2D Box such as a rectangle on a map!
k1 > x1 AND k1 < x2 AND k2 > y1 AND k2 < y2
• Supports a range search for the first key but sequentially scans

this range to extract the second key matches!
• 2D circle such as all restaurants within 5 kms from NYUAD
• Better supported by n-dimensional indexes such as R-trees,

quad-trees and KD-trees

K-NN or nearest-neighbor queries such as the 5 coffee shops
nearest to campus.

Complex string regular expression matches, genome string
matches, etc.
• B+ trees can support LIKE ‘^abc’ or ‘abc%’ but not

expressions LIKE ‘%abc%’.

B+ trees: inner workings

Properties of a B+ tree

Multi-way search tree that is perfectly balanced: all leaf nodes are at the
same depth.

Except the root, all nodes are at least half-full
• If 𝐹 is the fanout, then each internal node has at least 𝑑 entries (and

𝑑 + 1 children) where 𝑑 = 𝐹/2
• The root must have at least 1 entry and 2 children or is a leaf with 1

to 𝐹 − 1 entries
• The maximum number of entries in any node is 𝐹 − 1

Each entry in an internal node is a search key such that the pointer to the
left subtree of the entry contains all keys that are less than this search key
and the pointer to the right subtree contains all keys that are >= this
search key

The internal nodes do not contain data entries only routing keys. (B-trees
have data pointers in the internal nodes)

M-way search tree
Self-balancing

Occupancy invariant

Key invariant

No data in internal nodes

B+ tree search example

Search for key 1414 >= 10: go to right
subtree

14 >= 13 & 14 < 16:
go to right subtree of
key 13

There are sibling pointers
in between leaves and
nodes. Not shown for
brevity!

B+ Tree Insert

Find correct leaf node

Insert data entry into the leaf in sorted order.

If leaf has enough space, done!

Else

Split the leaf into two leaves

Redistribute entries evenly between the leaves

Copy up middle key pointing to the new leaf into the leaf’s parent.

You may to have split the parent inner node

Split,

Redistribute, but now

Push up middle key.

You may have to repeat this all the way up the tree!

B+ tree insertion example

What happens when we insert a series of
search keys into a B+ tree with fanout = 3?

Step 1:

Find leaf page or create root if tree is empty
and insert new search key.

B+ tree insertion example

Step 1:

Find leaf page & insert key if not full!

B+ tree insertion example

Step 1:
Find leaf page & insert key if not full!

Step 2:
Split leaf page if full

B+ tree insertion example

Step 1:
Find leaf page & insert key if not full!

Step 2:
Split leaf page if full
Redistribute 50/50

B+ tree insertion example

Step 1:
Find leaf page & insert key if not full!

Step 2:
Split leaf page if full
Redistribute 50/50

Step 3:
Copy up to parent if leaf is split

B+ tree insertion example

Step 1:
Find leaf page & insert key if not full!

Step 2:
Split leaf page if full
Redistribute 50/50

Step 3:
Copy up to parent if leaf is split

B+ tree insertion example

Step 1:
Find leaf page & insert key if not full!

Step 2:
Split leaf page if full
Redistribute 50/50

Step 3:
Copy up to parent if leaf is split

B+ tree insertion example

Step 1:
Find leaf page & insert key if not full!

Step 2:
Split leaf page if full
Redistribute 50/50

Step 3:
Copy up to parent if leaf is split

Now repeat
these steps if
parent is full

B+ tree insertion example

Step 2:
Split parent page if full
Redistribute 50/50

Step 3:
Push (not copy) up to parent if leaf is split

B+ tree insertion example

Step 2:
Split parent page if full
Redistribute 50/50

Step 3:
Push (not copy) up to parent if leaf is split

Creating a new
root is how the
tree grows and
remains balanced!

B+ tree insertion example

Repeat steps until insertions complete!
Try the animation with different fanouts and
more search keys!

Does the key
invariant hold?

Does the occupancy
invariant hold?

Yes!

All keys in the left subtree are
smaller than the routing key
All keys in the right subtree are
greater than or equal to the
routing key

Yes!

Occupancy
invariant

Leaf Split

• Start with full leaf: 𝐹 − 1 = 2𝑑 entries, add one more entry
• Split into 2 leaves with 𝑑, 𝑑 + 1 entries.
• Copy first key from new leaf up! (parent grows)

All nodes (except root)
are at least half full

All leaves (and root) maintain invariant

Occupancy
invariant

Node Split

• Start with full node: 𝐹 − 1 = 2𝑑 keys
• Add one more key (now 2𝑑 + 1 keys)
• Split into 2 nodes with 𝑑, 𝑑 + 1 entries.
• Push first key from new node up! now 2 nodes with d

entries each 𝑑 = (𝐹 − 1)/2 = half full

All nodes maintain invariant

B+ Tree Delete

Find correct leaf node

Remove data entry from leaf.

If leaf at least half full à done!

Else

Borrow/Redistribute from one of your siblings

You may not be able to

Merge with a sibling

Delete search key with pointer to merged sibling

You may have made the parent inner node under-full!

Borrow/Redistribute or

Merge, and delete parent pointer

You may have to repeat this all the way up the tree!

B+ Tree Delete

Find correct leaf node

Remove data entry from leaf.

If leaf at least half full à done!

Else

Borrow/Redistribute from one of your siblings

You may not be able to

Merge with a sibling

Delete search key with pointer to merged sibling

You may have made the parent inner node under-full!

Borrow/Redistribute or

Merge, and delete parent pointer

You may have to repeat this all the way up the tree!

Scratch that!
• We often don’t enforce the occupancy

invariant.
• We just delete entries and leave the space.
• More data can be inserted – great.
• If leaf becomes empty, we delete pointer

from parent and we let the parent get
under-full

Every now then it is a good idea to recreate an
index (see bulk-loading)!

B+ trees
in practice

8 bytes for pointers to pages
8 bytes for the search key (e.g. a bigint)

Fanout ≈ %&'()*+(
%,*-.(/)*+($ 0(1)*+(≈ 234

!54 = 500

Average fanout "
6
×500 ≈ 333

Level # of index pages Size of
index

of data entries

0 1 root 8 KB 333
1 333 + 1 2.67 MB 3332 = 110,889
2 3332 + 333 + 1 889.8 MB 3333 = 36,926,037
3 3333 + 3332 + 333 + 1 296.3 GB 3334 = 12,296,370,321

You only need to
traverse 4 pages to find 1
in 12,296,370,321
records!

You can easily fit up to level 2 of the index entirely in memory!

Bulk-loading

Repeated index
inserts on large
data sets

Slow: for every insertion, we need to search all the
way from the root.

Poor cache efficiency: we visit different parts of the tree
depending on where the randomly ordered inserted
keys are!

Low storage utility: We can’t pack leaf pages (e.g. Get
80% or more fill), (leaves and nodes are usually 50%
empty) à larger index

Leaf pages are not stored sequentially: Slower index
reads, range searches. Matters even for non-clustered
indexes. (not all queries require access to full records
and rely on keys alone.)

Bulk Loading an
Index: Sort Keys
+ Build Index

Fewer IOs: no need to search!

Better cache efficiency: Only the active path along
which insertions occur needs to be cached during an
index build.

Higher storage utility: Can determine the fill on leaves
and internal nodes à smaller index

Leaf pages are stored sequentially.

You do need to sort the leaf keys, however. We will
look at efficient disk-based sorting algorithms later.

Step 1:

Sorted leaf entries

Fill leaf pages up to pre-
determined fill factor

Here we have a fill factor
of 100%

Bulk Loading Example

Step 2:

Update parent nodes
until full

Bulk Loading Example

Step 2:

Update parent nodes
until full

Bulk Loading Example

Step 2:

Update parent nodes
until full

Bulk Loading Example

Step 2:

Update parent nodes
until full

Bulk Loading Example

Step 3:

Split full parent (50/50) or using
another internal node fill criteria.
Updates can propagate to root

Once split, we will never revisit
the old-subtree

We only cache the active path

Bulk Loading Example

Can be flushed out
of memory!

Step 2:

Update parent nodes
until full

Bulk Loading Example

Bulk loading Complete!

Bulk Loading Example

Cost Analysis

Heap File vs. Sorted vs. Clustered Index

Identify your access
patterns/workloads

Create a model to quantify
your trade-offs

Heap File Sorted Clustered
Index

Scan 𝐵 × 𝑇 𝐵 × 𝑇

Equality-search $𝐵 2× 𝑇 log#𝐵 × 𝑇

Range-search 𝐵 × 𝑇 log#𝐵 + #pages × 𝑇

Single Record Insert 2𝑇 log#𝐵 + 𝐵 ×𝑇

Single Record
Delete

$𝐵 2 + 1 × 𝑇 log#𝐵 + 𝐵 ×𝑇

Heap File vs. Sorted vs. Clustered Index

Identify your access
patterns/workloads

Create a model to quantify
your trade-offs

Estimate in a principled way the costs. Crude &
insightful (not complex & perfect)
• Time to read or write a block/page (T)
• Number of blocks/pages (B)
• Number of records per page (R)
• Conduct average-case analysis

Identify assumptions upfront
• Heap files append inserts
• Sorted files are packed (always compact after

deletion)
• Sorted files are sorted by search key
• Ignore sequential vs. random IO, in-memory

costs, …

𝐹 is the “average” internal fanout of the tree

𝑅 is the # of records per block

𝐵𝑅 is the # of records

𝐸 is the # of entries per leaf

⁄!"
is the # of leaves

log$
!"
#

is the depth of the tree

Clustered index with sorted 𝟐/𝟑 full heap file pages

Fanout 𝐹 is large as leaf pages are only <key, pointer> pairs

Indexing Assumptions

Calculations

Scan Cost

Heap File Sorted Clustered Index
Scan 𝐵 × 𝑇 𝐵 × 𝑇 Slower?

Equality-search 4𝐵 2× 𝑇 log% 𝐵 × 𝑇

Range-search 𝐵 × 𝑇 log% 𝐵 + #pages × 𝑇

Single Record Insert 2𝑇 log% 𝐵 + 𝐵 ×𝑇

Single Record
Delete

4𝐵 2 + 1 × 𝑇 log% 𝐵 + 𝐵 ×𝑇

Usually, an indexed file is maintained at a fill-factor = 2/3, so it is
spread over more pages than a packed sorted or heap file

Heap File Sorted Clustered Index
Scan 𝐵 × 𝑇 𝐵 × 𝑇 &

%𝐵 × 𝑇

Equality-search !
% 𝑇 log% 𝐵 × 𝑇 log$!"# + 1 ×𝑇

Range-search 𝐵 × 𝑇 log% 𝐵 + #pages × 𝑇

Single Record Insert 2𝑇 log% 𝐵 + 𝐵 ×𝑇

Single Record
Delete

!
% + 1 × 𝑇 log% 𝐵 + 𝐵 ×𝑇

Equality-Search Cost

Recall logB
CD
E

so we navigate down to the leaf and then we
lookup the record from the heap file (+1) !

Range-Search Cost

Heap File Sorted Clustered Index
Scan 𝐵 × 𝑇 𝐵 × 𝑇 &

%𝐵 × 𝑇

Equality-search !
% 𝑇 log% 𝐵 × 𝑇 log$!"# + 1 ×𝑇

Range-search 𝐵 × 𝑇 log% 𝐵 + #pages × 𝑇 log$!"# + &
% #()*+, ×𝑇

Single Record Insert 2𝑇 log% 𝐵 + 𝐵 ×𝑇

Single Record
Delete

!
% + 1 × 𝑇 log% 𝐵 + 𝐵 ×𝑇

Recall logB !"
so we navigate down to the leaf and then we

sequentially scan the records in the range from the heap file
($% #pages) !

Insertion & Deletion Costs

Heap File Sorted Clustered Index
Scan 𝐵 × 𝑇 𝐵 × 𝑇 &

%𝐵 × 𝑇

Equality-search !
% 𝑇 log% 𝐵 × 𝑇 log$!"# + 1 ×𝑇

Range-search 𝐵 × 𝑇 log% 𝐵 + #pages × 𝑇 log$!"# + &
% #()*+, ×𝑇

Single Record Insert 2𝑇 log% 𝐵 + 𝐵 ×𝑇 log$!"# + 3 ×𝑇

Single Record
Delete

!
% + 1 × 𝑇 log% 𝐵 + 𝐵 ×𝑇 log$!"# + 3 ×𝑇

Find where to insert key: logB !"
#

Make sure you update the heap page: 1 read + 1 write
Update leaf with key +1

Big-Oh Costs

Heap File Sorted Clustered Index
Scan Ο(𝐵) Ο(𝐵) Ο(𝐵)

Equality-search Ο(𝐵) O log% 𝐵 O log$ 𝐵

Range-search Ο(𝐵) O log% 𝐵 O log$ 𝐵

Single Record Insert O(1) O(𝐵) O log$ 𝐵

Single Record
Delete

Ο(𝐵) O(𝐵) O log$ 𝐵

Are indexes
clear winners?

Are indexes clear winners?

We ignored the difference between sequential vs. random IO.

On SSD indexes + read-mostly workloads are winning
combinations!

On HDD (disk) 1	random	IO	≡ 100	sequential	IOs
• Indexes win only if we are very selective i.e.,

visiting less ⁄! !FF of the table’s pages,
• or if we navigate the index once and then

perform sequential IO at the leaf or heap file
level i.e., range search on a clustered index.

Design Considerations

System Design Considerations

Node size Slower disks à larger node size
Scan heavy workloads à larger node size

Merge threshold

Variable-length keys

Non-unique index

Relax the occupancy invariant. Let it underflow
and delay merges! Reorganization is expensive.

Make the occupancy invariant about size rather
than # of entries.
Use compression to store more keys per node!

Use <k, [list of rid references]> but now you have
variable-length entries in the leaf. What about NULLs?

Database Design Considerations

Implicit Index Indexes are automatically created to enforce
primary key and uniqueness constraints.

Partial Index

Covering Index
INCLUDE

Expression Index

An index on a subset of the entire table that is
heavily accessed allows for smaller indexes

Include the attributes that you need by value in the
index to eliminate the additional heap file look-up

Store the output of an expression as the search key
instead of the original values (make an index case-
insensitive, or index dates by year or month)

