
The Buffer Manager

Disk Space Management

Buffer Pool Management

Access Methods
Files & Index Management

Query Parsing & Optimization

Query Evaluation
Relational Operators

SQL Client

Provides the illusion of accessing
and modifying disk pages in
memory.

Transforms page requests (reads,
writes) from upper levels into
storage layer IO requests.

The Buffer Manager

DISK

Heap
Page Dir

Disk Space Management

Page 1 Page 2

Buffer Pool Management

RAM

Files & Index Management

Query Execution Engine

Page 3 Page 4 Page 5 Page 6 Page 7 … Page
100 …

Page
Table Page 3 Page 4 Page 5

Bu
ffe

r P
oo

l

Get page 5 Pointer to
page 5

Read page Write page

What does this illusion entail?
Address Translation: mapping disk page requests to a memory
address location. The data must be in RAM for any processing to
occur!

Resource Allocation (Deception): small buffer, large disk, many page
requests. Deciding which pages to remove from memory to
accommodate new page requests.

Reads/Writes à Disk IOs: work with the disk space manager to
read in the page but also to write out modified “dirty” pages
back to disk

Buffer pool: Large range of memory, malloced at DBMS server
boot time. Divided into frames. Each frame can hold a page from
disk.

FrameID PageID Dirty? Pin Count
0
1
2
3
4
5
6
7
8
9

Page table: Small array malloced at DBMS server
boot time to keep track of the buffer state.

Hash table index on PageID: to get the frame in
which the page is loaded.

The Buffer Pool
& The Page Table

FrameID PageID Dirty? Pin Count
0 5 0 0
1 4 0 0
2 7 1 1
3 8 0 1
4 9 1 2
5 1 1 0
6 3 0 0
7
8
9

Disk Pages

Read & write requests arrive from different transactions. Each
requestor pins while in use and unpins pages immediately after.

Dirty bit Pin count

Why do we
use a dirty
bit?

Why do we
store a pin
count?

Page Request

It is in the buffer pool?

Pin page (increment pin couter) &
return memory (frame) address

Is the buffer empty? Read page from disk into empty
frame

Choose a page to replace
Page Replacement Policy

Is the victim page
dirty?

Write the dirty page to disk.
Mark the frame as clean

Read requested page from disk
into the selected frame

Yes

No

Yes

No

Yes

No

Transaction x
requests object y Transaction x processes object y

Set
dirty bit

Unpin
page

The page can be replaced
once the pin counter == 0

Page writes

c

c c

Page Request

It is in the buffer pool?

Pin page (increment pin couter) &
return memory (frame) address

Is the buffer empty? Read page from disk into empty
frame

Choose a page to replace
Page Replacement Policy

Is the victim page
dirty?

Write the dirty page to disk.
Mark the frame as clean

Read requested page from disk
into the selected frame

Yes

No

Yes

No

Yes

No

Transaction x
requests object y Transaction x processes object y

Set
dirty bit

Unpin
page

The page can be replaced
once the pin counter == 0

Page writes

c

c c
c

c

Page Request

It is in the buffer pool?

Pin page (increment pin couter) &
return memory (frame) address

Is the buffer empty? Read page from disk into empty
frame

Choose a page to replace
Page Replacement Policy

Is the victim page
dirty?

Write the dirty page to disk.
Mark the frame as clean

Read requested page from disk
into the selected frame

Yes

No

Yes

No

Yes

No

Transaction x
requests object y Transaction x processes object y

Set
dirty bit

Unpin
page

The page can be replaced
once the pin counter == 0

Page writes

c c

Page Request

It is in the buffer pool?

Pin page (increment pin couter) &
return memory (frame) address

Is the buffer empty? Read page from disk into empty
frame

Choose a page to replace
Page Replacement Policy

Is the victim page
dirty?

Write the dirty page to disk.
Mark the frame as clean

Read requested page from disk
into the selected frame

Yes

No

Yes

No

Yes

No

Transaction x
requests object y Transaction x processes object y

Set
dirty bit

Unpin
page

The page can be replaced
once the pin counter == 0

Page writes

Goal: Minimize stalls from
reading data from disk!

Mo
re

 t
im

e

Page Replacement Policies

Minimizes cache misses!

Minimal overhead

Design Goals of a Page Replacement Policy

If you knew the future, you could optimize
the choice of pages to keep/replace to
minimize your disk IOs

The implementation of the policy needs to
be fast: cannot afford to wait for an
expensive algorithm to run.

You need to minimize the meta-data you
store for each page as well.

Minimizes Cache Misses

Minimal Overhead

LRU & CLOCK

Least Recently
Used (LRU)
Maintain a timestamp of when
each page was last accessed.

When the DBMS needs to
evict a page, select the one
with the oldest timestamp.

Minimizes Cache Misses

Intuition: if we haven’t accessed a page in
while, we probably won’t access it again.
Why? Temporal locality

Minimal Overhead

Use a min-heap data structure to
efficiently search for the “least recently
used” page to replace.

LRU in action

FrameID PageID Dirty? Pin Count
Last

Accessed
0 0 0 0 16
1 1 0 0 19
2 2 0 0 23
3 3 0 0 27
4 4 1 0 28
5 5 1 0 32
6 6 1 0 36
7 7 1 0 37
8 8 0 0 39
9 9 1 0 40

LRU in action

FrameID PageID Dirty? Pin Count
Last

Accessed
0 10 1 0 45
1 11 0 0 53
2 12 0 0 57
3 13 0 0 59
4 14 0 0 62
5 5 1 0 32
6 6 1 0 36
7 7 1 0 37
8 8 0 0 39
9 9 1 0 40

LRU in action

FrameID PageID Dirty? Pin Count
Last

Accessed
0 10 1 0 45
1 11 0 0 53
2 12 0 0 57
3 13 0 0 59
4 14 0 0 62
5 5 1 0 68
6 6 1 0 69
7 7 1 0 71
8 8 0 0 73
9 9 1 0 76

LRU in action

FrameID PageID Dirty? Pin Count
Last

Accessed
0 15 1 0 81
1 16 0 0 84
2 17 0 0 88
3 18 0 0 93
4 19 0 0 94
5 5 1 0 68
6 6 1 0 69
7 7 1 0 71
8 8 0 0 73
9 9 1 0 76

LRU in action

FrameID PageID Dirty? Pin Count
Last

Accessed
0 10 1 0 81
1 11 0 0 84
2 12 0 0 88
3 13 0 0 93
4 14 0 0 94
5 5 1 0 100
6 6 1 0 102
7 7 1 0 106
8 8 0 0 109
9 9 1 0 111

LRU à CLOCK
Approximate LRU

What if instead of using 4-8
bytes to store time, we used a
single bit

LRU --- Minimal Overhead?

Do not store a separate timestamp per
page!

Just store a reference bit.

Scan through pages in the page table as
if they were in a circular buffer with a
“clock hand”:
• If ref bit is 1, set to 0
• If ref bit is 0, evict!

CLOCK in action

FrameID PageID Dirty? Pin Count Ref Bit
0 0 1 0 1
1 1 0 0 1
2 2 0 0 1
3 3 0 0 1
4 4 0 0 1
5 5 1 0 1
6 6 1 0 1
7 7 1 0 1
8 8 0 0 1
9 9 1 0 1

CLOCK in action

FrameID PageID Dirty? Pin Count Ref Bit
0 0 1 0 1
1 1 0 0 1
2 2 0 0 1
3 3 0 0 1
4 4 0 0 1
5 5 1 0 1
6 6 0 0 1
7 7 0 0 1
8 8 0 0 1
9 9 0 0 1

Ref Bit
0
0
0
0
0
0
0
0
0
0

0 10 1 0 1

CLOCK in action

FrameID PageID Dirty? Pin Count Ref Bit
0 10 1 0 1
1 11 1 0 1
2 12 0 0 1
3 13 0 0 1
4 14 0 0 1
5 5 1 0 1
6 6 1 0 1
7 7 0 0 1
8 8 1 0 1
9 9 0 0 1

CLOCK in action

FrameID PageID Dirty? Pin Count Ref Bit
0 10 1 0 1
1 11 1 0 1
2 12 0 0 1
3 13 0 0 1
4 14 0 0 1
5 5 1 0 1
6 6 1 0 1
7 7 0 0 1
8 8 1 0 1
9 9 0 0 1

0
0
0
0
0

0
0
0
0
0

5 15 0 0 1

CLOCK in action

FrameID PageID Dirty? Pin Count Ref Bit
0 5 1 0 1
1 6 1 0 1
2 7 0 0 1
3 8 0 0 1
4 9 0 0 1
5 15 1 0 1
6 16 1 0 1
7 17 0 0 1
8 18 1 0 1
9 19 0 0 1

LRU or CLOCK
Minimizes Cache Misses

Intuition: if we haven’t accessed
a page in while, we probably
won’t access it again.

Sequential Flooding

• A query sequentially scans a large file of many
pages.

• The buffer is polluted with pages that are read
once and then never again …

select * from R where id = 12;

select sum(a) from LargeTable;

select * from R where id = 18;

Minimizes cache misses for
some workloads

• or will be read again but soon after eviction in
the case of repeated scans

select * from R, Y where R.id = Y.id;

• Certain join implementations (e.g. nested loop
join) repeatedly scan the inner table.

MRU

Most Recently
Used (LRU)
Maintain pages in order of last
access.

When the DBMS needs to
evict a page, select the one
with the most recent
timestamp!

Minimizes Cache Misses for Repeated Scans

Intuition: The pages that we just read in are
least likely to be read again (at least for a
while!)

MRU vs. LRU

Repeated Scans

Policy Optimizations

Likelihood of Re-access
LRU-K (Often LRU-2)Multiple Buffer Pools

& Hints
Prefetching

Multiple buffer pools:
• Per type (index vs. database

table file pools)
• Per

transaction/query/database
Different policies per pool.

DBMS can provide hints on
which pages to keep or to evict.

Top levels or root of an index
are important, but leaf nodes
may not be frequently accessed

For a given query, we
can predict the access
patten. So prefetch the
pages into the buffer
even before they are
requested.

For example:
select sum(a)
from R;
is a sequential scan so
prefetch a few pages at
a time.

Maintain the last K
timestamps a page was
accessed.

Compute the interval
between them

Estimate the next time a
page will be accessed.

Keep pages that will be
accessed soon.48 COMMUNICATIONS OF THE ACM | JULY 2009 | VOL. 52 | NO. 7

practice

was about equal to the (fractional)
price of a disk drive required to access
such a record every 400 seconds, which
they rounded to five minutes. The
break-even interval is about inversely
proportional to the record size. Gray and
Putzolu reported one hour for 100-byte
records and two minutes for 4KB pages.

The five-minute rule was reviewed
and renewed 10 years later.14 Lots of
prices and performance parameters
had changed (for example, the price of
RAM had tumbled from $5,000 to $15
per megabyte). Nonetheless, the break-
even interval for 4KB pages was still
around five minutes. The first goal of
this article is to review the five-minute
rule after another 10 years.

Of course, both previous articles
acknowledged that prices and
performance vary among technolo-
gies and devices at any point in time
(RAM for mainframes versus mini-
computers, SCSI versus IDE disks, and
so on). Interested readers are invited to
reevaluate the appropriate formulas
for their environments and equipment.
The values used here (in Table 1) are
meant to be typical for 2007 technolo-
gies rather than universally accurate.

In addition to quantitative
changes in prices and performance,
qualitative changes already under
way will affect the software and
hardware architectures of servers
and, in particular, database systems.
Database software will change
radically with the advent of new
technologies: virtualization with
hardware and software support, as well
as higher utilization goals for physical
machines; many-core processors and
transactional memory supported both
in programming environments and
hardware;20 deployment in containers
housing thousands of processors and
many terabytes of data;17 and flash
memory that fills the gap between
traditional RAM and traditional
rotating disks.

Flash memory falls between
traditional RAM and persistent mass
storage based on rotating disks in
terms of acquisition cost, access

IN 1 98 7, JIM Gray and Gianfranco Putzolu published
their now-famous five-minute rule15 for trading off
memory and I/O capacity. Their calculation compares
the cost of holding a record (or page) permanently
in memory with the cost of performing disk I/O
each time the record (or page) is accessed, using
appropriate fractional prices of RAM chips and
disk drives. The name of their rule refers to the
break-even interval between accesses. If a record
(or page) is accessed more often, it should be kept in
memory; otherwise, it should remain on disk and
be read when needed.

Based on then-current prices and performance
characteristics of Tandem equipment, Gray and
Putzolu found the price of RAM to hold a 1KB record

DOI:10.1145/1538788.1538805

 Article development led by
 queue.acm.org

Revisiting Gray and Putzolu’s
famous rule in the age of Flash.

BY GOETZ GRAEFE

The Five-
Minute Rule
20 Years Later
(and How Flash Memory
Changes the Rules)

Keep it dirty /
Background writes

Scan Sharing

When choosing which page to evict,
you can skip “dirty” pages --- the lazy
approach saves you a write during a
page request.

A background thread can flush the dirty
pages every now & then to disk giving
you more clean pages on page
requests that don’t require “write”.

We will examine writes again when looking at
recovery and concurrency control.

Query A is scanning relation R
and has scanned and evicted 5
pages already

Query B arrives and, also
wants to scan relation R.

Query B jumps in with A and
starts at A’s current cursor
sharing the scan.

Query B then requests the first
5 pages that it missed.

OS & DBMS Buffer Interactions

Most disk IO requests go through
the OS. The OS maintains its own
filesystem cache.

Why can’t we just
rely on the FS
cache?

Portability: Different FS cache use different
page replacement policies. This leads to
different performance on different OS
and a DBMS needs better control.

Force writes: We will see later that
recovery protocols require the DBMS to
enforce page flushes to disk and the OS
may delay such requests.

Prefetching: DBMS has more information
on the access patterns of different
queries and benefits from prefetching and
page hints. The OS FS is general purpose.

