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Provides the illusion of accessing 
and modifying disk pages in 
memory.

Transforms page requests (reads, 
writes) from upper levels into 
storage layer IO requests.
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What does this illusion entail?
Address Translation: mapping disk page requests to a memory 
address location. The data must be in RAM for any processing to 
occur! 

Resource Allocation (Deception): small buffer, large disk, many page 
requests. Deciding which pages to remove from memory to 
accommodate new page requests.

Reads/Writes à Disk IOs: work with the disk space manager to 
read in the page but also to write out modified “dirty” pages 
back to disk



Buffer pool: Large range of memory, malloced at DBMS server 
boot time. Divided into frames. Each frame can hold a page from 
disk.

FrameID PageID Dirty? Pin Count
0
1
2
3
4
5
6
7
8
9

Page table: Small array malloced at DBMS server 
boot time to keep track of the buffer state.

Hash table index on PageID: to get the frame in 
which the page is loaded.

The Buffer Pool 
& The Page Table



FrameID PageID Dirty? Pin Count
0 5 0 0
1 4 0 0
2 7 1 1
3 8 0 1
4 9 1 2
5 1 1 0
6 3 0 0
7
8
9

Disk Pages

Read & write requests arrive from different transactions. Each 
requestor pins while in use and unpins pages immediately after.

Dirty bit Pin count

Why do we 
use a dirty 
bit?

Why do we 
store a pin 
count?



Page Request

It is in the buffer pool?

Pin page (increment pin couter) & 
return memory (frame) address

Is the buffer empty? Read page from disk into empty 
frame

Choose a page to replace
Page Replacement Policy

Is the victim page 
dirty?

Write the dirty page to disk.
Mark the frame as clean

Read requested page from disk 
into the selected frame 

Yes

No

Yes

No

Yes

No

Transaction x 
requests object y Transaction x processes object y

Set 
dirty bit

Unpin 
page

The page can be replaced 
once the pin counter == 0 

Page writes

c

c c
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Page Request

It is in the buffer pool?

Pin page (increment pin couter) & 
return memory (frame) address

Is the buffer empty? Read page from disk into empty 
frame

Choose a page to replace
Page Replacement Policy

Is the victim page 
dirty?

Write the dirty page to disk.
Mark the frame as clean

Read requested page from disk 
into the selected frame 

Yes

No

Yes

No

Yes

No

Transaction x 
requests object y Transaction x processes object y

Set 
dirty bit

Unpin 
page

The page can be replaced 
once the pin counter == 0 

Page writes

Goal: Minimize stalls from 
reading data from disk!
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Page Replacement Policies



Minimizes cache misses! 

Minimal overhead

Design Goals of a Page Replacement Policy

If you knew the future, you could optimize 
the choice of pages to keep/replace to 
minimize your disk IOs

The implementation of the policy needs to 
be fast: cannot afford to wait for an 
expensive algorithm to run.

You need to minimize the meta-data you 
store for each page as well.

Minimizes Cache Misses

Minimal Overhead



LRU & CLOCK



Least Recently 
Used (LRU)
Maintain a timestamp of when 
each page was last accessed.

When the DBMS needs to 
evict a page, select the one 
with the oldest timestamp. 

Minimizes Cache Misses

Intuition: if we haven’t accessed a page in 
while, we probably won’t access it again. 
Why? Temporal locality

Minimal Overhead

Use a min-heap data structure to 
efficiently search for the “least recently 
used” page to replace.



LRU in action

FrameID PageID Dirty? Pin Count
Last 

Accessed
0 0 0 0 16
1 1 0 0 19
2 2 0 0 23
3 3 0 0 27
4 4 1 0 28
5 5 1 0 32
6 6 1 0 36
7 7 1 0 37
8 8 0 0 39
9 9 1 0 40



LRU in action

FrameID PageID Dirty? Pin Count
Last 

Accessed
0 10 1 0 45
1 11 0 0 53
2 12 0 0 57
3 13 0 0 59
4 14 0 0 62
5 5 1 0 32
6 6 1 0 36
7 7 1 0 37
8 8 0 0 39
9 9 1 0 40



LRU in action

FrameID PageID Dirty? Pin Count
Last 

Accessed
0 10 1 0 45
1 11 0 0 53
2 12 0 0 57
3 13 0 0 59
4 14 0 0 62
5 5 1 0 68
6 6 1 0 69
7 7 1 0 71
8 8 0 0 73
9 9 1 0 76



LRU in action

FrameID PageID Dirty? Pin Count
Last 

Accessed
0 15 1 0 81
1 16 0 0 84
2 17 0 0 88
3 18 0 0 93
4 19 0 0 94
5 5 1 0 68
6 6 1 0 69
7 7 1 0 71
8 8 0 0 73
9 9 1 0 76



LRU in action

FrameID PageID Dirty? Pin Count
Last 

Accessed
0 10 1 0 81
1 11 0 0 84
2 12 0 0 88
3 13 0 0 93
4 14 0 0 94
5 5 1 0 100
6 6 1 0 102
7 7 1 0 106
8 8 0 0 109
9 9 1 0 111



LRU à CLOCK
Approximate LRU

What if instead of using 4-8 
bytes to store time, we used a 
single bit 

LRU --- Minimal Overhead?

Do not store a separate timestamp per 
page!

Just store a reference bit.

Scan through pages in the page table as 
if they were in a circular buffer with a 
“clock hand”:
• If ref bit is 1, set to 0
• If ref bit is 0, evict!



CLOCK in action

FrameID PageID Dirty? Pin Count Ref Bit
0 0 1 0 1
1 1 0 0 1
2 2 0 0 1
3 3 0 0 1
4 4 0 0 1
5 5 1 0 1
6 6 1 0 1
7 7 1 0 1
8 8 0 0 1
9 9 1 0 1



CLOCK in action

FrameID PageID Dirty? Pin Count Ref Bit
0 0 1 0 1
1 1 0 0 1
2 2 0 0 1
3 3 0 0 1
4 4 0 0 1
5 5 1 0 1
6 6 0 0 1
7 7 0 0 1
8 8 0 0 1
9 9 0 0 1

Ref Bit
0
0
0
0
0
0
0
0
0
0

0 10 1 0 1



CLOCK in action

FrameID PageID Dirty? Pin Count Ref Bit
0 10 1 0 1
1 11 1 0 1
2 12 0 0 1
3 13 0 0 1
4 14 0 0 1
5 5 1 0 1
6 6 1 0 1
7 7 0 0 1
8 8 1 0 1
9 9 0 0 1



CLOCK in action

FrameID PageID Dirty? Pin Count Ref Bit
0 10 1 0 1
1 11 1 0 1
2 12 0 0 1
3 13 0 0 1
4 14 0 0 1
5 5 1 0 1
6 6 1 0 1
7 7 0 0 1
8 8 1 0 1
9 9 0 0 1

0
0
0
0
0

0
0
0
0
0

5 15 0 0 1



CLOCK in action

FrameID PageID Dirty? Pin Count Ref Bit
0 5 1 0 1
1 6 1 0 1
2 7 0 0 1
3 8 0 0 1
4 9 0 0 1
5 15 1 0 1
6 16 1 0 1
7 17 0 0 1
8 18 1 0 1
9 19 0 0 1



LRU or CLOCK
Minimizes Cache Misses

Intuition: if we haven’t accessed 
a page in while, we probably 
won’t access it again.

Sequential Flooding

• A query sequentially scans a large file of many 
pages. 

• The buffer is polluted with pages that are read 
once and then never again …

select * from R where id = 12;

select sum(a) from LargeTable;

select * from R where id = 18;

Minimizes cache misses for 
some workloads

• or will be read again but soon after eviction in 
the case of repeated scans

select * from R, Y where R.id = Y.id;

• Certain join implementations (e.g. nested loop 
join) repeatedly scan the inner table.



MRU



Most Recently 
Used (LRU)
Maintain pages in order of last 
access.

When the DBMS needs to 
evict a page, select the one 
with the most recent 
timestamp!

Minimizes Cache Misses for Repeated Scans

Intuition: The pages that we just read in are 
least likely to be read again (at least for a 
while!)



MRU vs. LRU

Repeated Scans





Policy Optimizations



Likelihood of Re-access
LRU-K (Often LRU-2)Multiple Buffer Pools 

& Hints
Prefetching

Multiple buffer pools:
• Per type (index vs. database 

table file pools)
• Per

transaction/query/database
Different policies per pool.

DBMS can provide hints on 
which pages to keep or to evict. 

Top levels or root of an index 
are important, but leaf nodes 
may not be frequently accessed

For a given query, we
can predict the access 
patten. So prefetch the 
pages into the buffer 
even before they are 
requested.

For example:
select sum(a) 
from R; 
is a sequential scan so 
prefetch a few pages at 
a time.

Maintain the last K 
timestamps a page was 
accessed. 

Compute the interval 
between them 

Estimate the next time a 
page will be accessed.

Keep pages that will be 
accessed soon.48    COMMUNICATIONS OF THE ACM    |   JULY 2009  |   VOL.  52  |   NO.  7

practice

was about equal to the (fractional) 
price of a disk drive required to access 
such a record every 400 seconds, which 
they rounded to five minutes. The 
break-even interval is about inversely 
proportional to the record size. Gray and 
Putzolu reported one hour for 100-byte 
records and two minutes for 4KB pages.

The five-minute rule was reviewed 
and renewed 10 years later.14 Lots of 
prices and performance parameters 
had changed (for example, the price of 
RAM had tumbled from $5,000 to $15 
per megabyte). Nonetheless, the break-
even interval for 4KB pages was still 
around five minutes. The first goal of 
this article is to review the five-minute 
rule after another 10 years.

Of course, both previous articles 
acknowledged that prices and 
performance vary among technolo-
gies and devices at any point in time 
(RAM for mainframes versus mini-
computers, SCSI versus IDE disks, and 
so on). Interested readers are invited to  
reevaluate the appropriate formulas 
for their environments and equipment.  
The values used here (in Table 1) are  
meant to be typical for 2007 technolo-
gies rather than universally accurate. 

In addition to quantitative 
changes in prices and performance, 
qualitative changes already under 
way will affect the software and 
hardware architectures of servers 
and, in particular, database systems. 
Database software will change 
radically with the advent of new 
technologies: virtualization with 
hardware and software support, as well 
as higher utilization goals for physical 
machines; many-core processors and 
transactional memory supported both 
in programming environments and 
hardware;20 deployment in containers 
housing thousands of processors and 
many terabytes of data;17 and flash 
memory that fills the gap between 
traditional RAM and traditional 
rotating disks.

Flash memory falls between 
traditional RAM and persistent mass 
storage based on rotating disks in 
terms of acquisition cost, access 

IN 1 98 7,  JIM  Gray and Gianfranco Putzolu published 
their now-famous five-minute rule15 for trading off 
memory and I/O capacity. Their calculation compares 
the cost of holding a record (or page) permanently 
in memory with the cost of performing disk I/O 
each time the record (or page) is accessed, using 
appropriate fractional prices of RAM chips and  
disk drives. The name of their rule refers to the  
break-even interval between accesses. If a record  
(or page) is accessed more often, it should be kept in 
memory; otherwise, it should remain on disk and  
be read when needed.

Based on then-current prices and performance 
characteristics of Tandem equipment, Gray and 
Putzolu found the price of RAM to hold a 1KB record 
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Keep it dirty / 
Background writes

Scan Sharing

When choosing which page to evict, 
you can skip “dirty” pages --- the lazy 
approach saves you a write during a 
page request. 

A background thread can flush the dirty 
pages every now & then to disk giving
you more clean pages on page
requests that don’t require “write”. 

We will examine writes again when looking at 
recovery and concurrency control.

Query A is scanning relation R 
and has scanned and evicted 5 
pages already

Query B arrives and, also 
wants to scan relation R.

Query B jumps in with A and 
starts at A’s current cursor 
sharing the scan. 

Query B then requests the first
5 pages that it missed.



OS & DBMS Buffer Interactions



Most disk IO requests go through 
the OS. The OS maintains its own 
filesystem cache.

Why can’t we just 
rely on the FS 
cache?

Portability: Different FS cache use different 
page replacement policies. This leads to 
different performance on different OS 
and a DBMS needs better control.

Force writes: We will see later that 
recovery protocols require the DBMS to 
enforce page flushes to disk and the OS 
may delay such requests.

Prefetching: DBMS has more information 
on the access patterns of different 
queries and benefits from prefetching and 
page hints. The OS FS is general purpose.




