
Sorting & Hashing

Where we are
right now?

Disk Space Management

Buffer Pool Management

Access Methods
Files & Index Management

Query Parsing & Optimization

Query Evaluation
Relational Operators

SQL Client

Building blocks: Sorting & Hashing

Why are they building blocks?

• Rendezvous
• Duplicate elimination:

select DISTINCT a

• Join processing
select R JOIN S on a

• Grouping & Aggregations:
select SUM(a) from R GROUP BY b

• Ordering (Sorting)
• Ordered Result

select * from R ORDER BY A

• Bulk Loading

Why are they special in a DBMS?

• Well-studied in-memory algorithms!
• Sorting: Quick-, Merge-, Radix-, …

• Hashing

• But … tables don’t fit in memory

• Can’t rely on virtual memory

• Disk-oriented – minimize IO

• Prefer sequential IOs

What if we have an index?
Can we use it for sorting?

Unclustered IndexClustered Index

Leaf Nodes
Data Pointers

Data Files

Sorted Records

It depends!

2-Way Merge Sort

2-Way External Merge Sort Trace
Unsorted file on disk
N = 15 pages

Buffer Pool Size = 3

2-Way External Merge Sort Trace
Unsorted file on disk
N = 15 pages

Buffer Pool Size = 3

Pass 0 – Streaming Pass
15 sorted runs of length 1

2-Way External Merge Sort Trace
Unsorted file on disk
N = 15 pages

Buffer Pool Size = 3

Pass 0 – Streaming Pass
15 sorted runs of length 1

Pass 1 – Merge Pass
8 sorted runs of length 2

2-Way External Merge Sort Trace
Unsorted file on disk
N = 15 pages

Buffer Pool Size = 3

Pass 0 – Streaming Pass
15 sorted runs of length 1

Pass 1 – Merge Pass
8 sorted runs of length 2

Pass 2 – Merge Pass
4 sorted runs of length 4

2-Way External Merge Sort Trace
Unsorted file on disk
N = 15 pages

Buffer Pool Size = 3

Pass 0 – Streaming Pass
15 sorted runs of length 1

Pass 1 – Merge Pass
8 sorted runs of length 2

Pass 2 – Merge Pass
4 sorted runs of length 4

Pass 3 – Merge Pass
2 sorted runs of length 8

Pass 4 – Merge Pass
1 sorted run of length 15

Each pass costs 2N IOs
Read the file + Sort + Write the file

There are log!𝑁 + 1
passes

Total Cost: 2𝑁 × log!𝑁 + 1 IOs

What if B > 3 buffer pages?

Prefetch these

Double Buffering

• Prefetch the next run in the background while the system
is processing this run.

• Reduces the wait time for IO requests.
• Requires support for asynchronous IO, multi-threading:

the buffer manager brings in the next run while the
sorting thread processes the pages currently in the buffer.

K-Way Merge Sort

K-Way External Merge Sort Trace: Optimizing the Streaming Phase
Unsorted file on disk
N = 15 pages

Buffer Pool Size = 3

Pass 0 – Streaming Pass
5 sorted runs of length 3

Pass 1 – Merge Pass
3 sorted runs of length 6

Pass 2 – Merge Pass
2 sorted runs of length 12

Pass 3 – Merge Pass
1 sorted runs of length 15

Each pass costs 2N IOs
Read the file + Sort + Write the file

There are log!𝑁 + 1
passes

Total Cost: 2𝑁 × log! 𝑁/𝐵 + 1 IOs

There are log! 𝑁/𝐵 + 1
passes

Run length ≤ 𝐵 = 3

K-Way External Merge Sort Trace: Making use of more buffers!
Unsorted file on disk
N = 15 pages

Buffer Pool Size = 4

Pass 0 – Streaming Pass
4 sorted runs of length 4

Pass 1 – Merge Pass
2 sorted runs of length 12

Pass 2 – Merge Pass
1 sorted run of length 15

Each pass costs 2N IOs
Read the file + Sort + Write the file

Total Cost: 2𝑁 × log"#$ 𝑁/𝐵 + 1 IOs

There are log! 𝑁/𝐵 + 1
passes
There are log"#$ 𝑁/𝐵 + 1
passes

Run length ≤ 𝐵 = 4

Run length ≤ 𝐵(𝐵 − 1) = 4 ∗ 3 = 12

Run length ≤ 𝐵 𝐵 − 1 ∗ 𝐵 − 1 = 𝐵 𝐵 − 1 ! = 𝐵 𝐵 − 1 " = 4 ∗ 3 ∗ 3 = 36

K-Way External Merge Sort Trace: Making use of more buffers!
Unsorted file on disk
N = 15 pages

Buffer Pool
Size = 5

Pass 0 – Streaming Pass
4 sorted runs of length 5

Pass 1 – Merge Pass
2 sorted runs of length 12

Each pass costs 2N IOs
Read the file + Sort + Write the file

Total Cost: 2𝑁 × log"#$ 𝑁/𝐵 + 1 IOs

There are log"#$ 𝑁/𝐵 + 1
passes

of Passes of
External Sort

of pages in a file to
sort (N)

Buffer Size (B)
3 5 9 17 129 257

100 7 4 3 2 1 1
1,000 10 5 4 3 2 2

10,000 13 7 5 4 2 2
100,000 17 9 6 5 3 3

1,000,000 20 10 7 5 3 3
10,000,000 23 12 8 6 4 3

100,000,000 26 14 9 7 4 4
1,000,000,000 30 15 10 8 5 4

File Size 2- Pass Buffer Size
Pages (N) Bytes Pages (B) Bytes

100 400 KB 10 40 KB
1,000 4 MB 32 128 KB

10,000 40 MB 100 400KB
100,000 400 MB 317 1.27 MB

1,000,000 4 GB 1000 4 MB
10,000,000 40 GB 3163 12.65 MB

100,000,000 4000 GB 10000 40 MB
1,000,000,000 4 TB 31623 126.5 MB

2-Pass External Sort
• After the streaming pass, each sorted run is of

length 𝐵
• In each subsequent merge pass 𝑝, we merge 𝐵 − 1

runs
• Run length ≤ 𝐵× 𝐵 − 1 %

• In two passes (𝑝 = 1), we want the run length to
be ≥ 𝑁

• or 𝑁 ≤ 𝐵× 𝐵 − 1 $

A buffer of size 𝐵 = √𝑁 is needed to sort a table of
size 𝑁 in two passes (1 streaming + 1 merge)

External Hashing
When order isn’t important!

1

2

3

4

N

Input

1

2

3

4

B-1

External Hashing: Streaming Phase - Partition

Buffer Pool Size B

File Size N

1

2

3

4

N

Input

1

2

3

4

B-1

External Hashing: Streaming Phase - Partition

B-1

Partitioning hash
function: hp

Buffer Pool Size B

File Size N B-1 partitions of size ~N/(B-1)

4

3

2

1

3

1 The streaming partition
phase produces partitions
that have:
1. Many different values
2. Duplicate values that are

not contiguous
3. Different sizes!

Cost: 2𝑁

External Hashing: ReHash

B-1 partitions of size ~N/(B-1)

B

Buffer Pool
Assume each partition
Pi <= B

P1

P2

P3

PB-1

P4

Rehashing
function: hr

hr has to be different from hp

Each in-memory hash table:
1. Different values in different buckets

modulo collisions
2. Duplicate values (same key) stored

contiguously in the same bucket

On processing a partition spill out the
hash table to disk and process the next
partition (note partitions are disjoint!)

Create in-memory
hash table for
each partition

Fully
hashed
table

Cost: 2𝑁

2-Pass
External Hash

• After the streaming partition pass, we have
𝐵 − 1 partitions

• Each partition must be ≤ 𝐵 pages in size to
create an in-memory hash table in the ReHash
phase

• So the size of the file must be 𝑁 ≤ (𝐵 −
1)×𝐵 for a 2-pass external hash!

A buffer of size 𝐵 = √𝑁 is needed to hash a
table of size 𝑁 in two passes (1 partitioning + 1
rehash)

Recursive
Partitioning
What if the size of a
partition > B?

Suppose P1 > B

P1 Input

1

2

3

4

B-1

Buffer Pool Size B
P1,1

P1,2

P1,3

P1.B-1

P1,4

Partitioning hash
function: hp’
hp ≠ hp’

What about too many
duplicates?
What about too many
collisions?

The Sort-Hash Duality

External Sorting

1
2
3
4

1

3

1
2
3
4

1

3

Streaming Sort
(Conquer)

Merge Pass
(Combine)

Streaming Partition
(Divide)

ReHash Pass
(Conquer)

External Hashing

Sorting Hashing

2-Pass Cost
4𝑁 IOs (2𝑁 for streaming + 2𝑁
for merge)

4𝑁 IOs (2𝑁 for streaming
partitioning + 2𝑁 for ReHash)

2-Pass Memory
Requirement 𝐵 = √𝑁 𝐵 = √𝑁

Duplicate Elimination Scales with # of items Scales with # of distinct values

Ordered Results Supports Doesn’t support

Consistency
Same performance even with
duplicates

Sensitive to duplicates & poor hash
functions

Computational Cost More Expensive Cheaper

Comparing Sorting with Hashing

Duplicate Elimination
Streaming Sort Pass – can
eliminate some duplicates
Merge Pass – skipping over
duplicates

Partitioning Pass – can
eliminate some duplicates
ReHash Pass – If entry in
hash table, skip, else insert

If the file is sorted, scan and
skip duplicates

If the file is hashed, the result is
the hash-table

Grouping & Aggregation • Maintain a running aggregate for each group key
• MIN, MAX, COUNT, SUM à just update the aggregate
• AVG à update two aggregates: SUM, COUNT and then compute the AVG

Joins
• Sort-Merge Join
• Hash Join

Support for higher-order operations

