Query Processing

SQL Query Logical Query Plan

Optimized Physical Query Plan

Tp
select * from R T
0a>5(Tp(R))
where a > 5 —— > Og>s
. uery Farser Query Optimizer
order by b; parses/rewrites plan T selects operator
R
Each operator is a Console

subclass of an iterator

abstract class iterator
void setup(List<Iterator> children);
void init(args);
tuple next(); - \

> Oa>5

void close(); Select €

} ~ Y,
A

Heap Scan(R)

Query Processing

calls “setup”

External merge
sort

selection

Heap Scan

Query Executor

instantiates
operators

Each operator is a abstract class iterator
. void setup(List<Iterator> children);
subclass of an iterator void init(args);
tuple next();
void close();

}

Console

for each child in children: child.next()
child.init()

child.init() child.next()

Select

A

child.init() child.next()

Heap Scan(R)

Query Processing - lterator Model

Blocking

Streaming

Streaming

4)

new(function predicate): //constructor given predicate
p = predicate; //{return tuple.getValue(“a”)>5}
T init():
- N child.init(); //Initializes the heap scan op
Select current = null;
) $ " | next():
s N while (current != EOF && !p(current)){
| Heap Scan(R) | current = child.next();
}
return current;
~ /init(): /7/the—opwas setupto access the heap file A
current_page = file.getPage(9);
current_slot = current_page.getSlot(09);
next():
if(current_page == null) return EOF;
current = current_slot.getTuple();
current_slot.next();
if(current_slot == null):
current_page.next();
if(current_page != null):
current_slot = current_page.getSlot(09);
Y return current; D

Slide Credit: Berkeley CS-186 Public Edition

-

init():
, § child.init();
Select repeatedly call child.next() to generate sorted
- Y g runs on diskR until EOF
Heap Scan(R) open each sorted run / load into input buffer
next():
output = min tuple across all input buffers (remove

min tuple)

1f no tuples remain:
return EOF;

1f min tuple was Llast one 1in 1its buffer:
fetch next page from that run into buffer;

return output;

Slide Credit: Berkeley CS-186 Public Edition

The Join Operator

What is a Join?
R, S=ad(RXS)

Loans (R has n rows)

Students (S has m rows)

sid | eid date duration sid name major
72 | 981 | 3/8/20 | 2 weeks 2 Ibn Sina Bio
76 | 786 | 3/18/21 | 2days 3 Plato Phil
76 Al Khawarizmi CS
Ca rtesian Loans X Students
Prod l
ro u Ct X sid eid date duration sid name major
R)(S 72 981 3/8/20 2 weeks 72 Ibn Sina Bio
72 | 981 | 3/8/20 | 2weeks | 73 Plato Phil
: : : 72 981 3/8/20 2 weeks 76 Al Khawarizmi CS
Each row in R is paired | |
, , 76 | 786 | 3/18/21 | 2days | 72 Ibn Sina Bio
with each row in 5 to 76 | 786 | 3/18/21 | 2days | 73 Plato Phil
produce nm rows. 76 | 786 | 3/18/21 | 2days | 76 | AlKhawarizmi| CS

Join

R ™psid=ssid S

Fach row in R is

matched to a row
N S that satisfies the
join condition.

Loans (R has n rows)

Students (S has m rows)

sid | eid duration sid name major
72 | 981 | 3/8/20 | 2 weeks 2 Ibn Sina Bio
76 | 786 | 3/18/21 2 days 3 Plato Phil
76 Al Khawarizmi CS
Loans ™ Students = 0j4—siq(Loans XStudents)

sid eld date duration | sid name major
72 081 3/8/20 | 2 weeks 72 Ibn Sina Blo
= 76 | 786 | 3/18/21 | 2days | 76 | AlKhawarizmi| CS
e S —5/6/2 0 weths Ao 65
R e T O R B T Bo
S N TS CVET-V- PR W=D PN Piate P
76 | 786 | 3/18/21 | 2days | 76 | AlKhawarizmi| CS

The Join Analysis Set Up

Left / Outer Right / Inner
Relation R Relation S
Buffer Pool Size B Z' Fach table is broken down into pages.
b, ...
Each table has a join key attribute and a
5 1 2 value that could be a record id, or a tuple,
etc. We only show the join keys.
3 3 When computing join costs, we will ignore

the output costs:
(@) For now, we don't know how many
4 4 tuples will join
(b) Across all implementations, the output

cost Is the same
of pages: N # of pages: M
of tuples: n # of tuples: m

M

H

~

R — Loans) Algorithm Naive NLJ Page NLJ Block NLJ Index NLJ
(sid, eid, date, duration, ...) Cost (inner: S)

N = 500

n = 40,000

Tuples per page: 80

S — Students Cost (inner: R)
(sid, name, major; ...)

M = 1000
m = 100,000
Tuples per page: 100

B buffer size Effect of Buffer

The Equipment Loans Application

Nested Loops Join

Naive Nested Loops Join

S
R # of pages: M

of pages: N # of tuples: m for each tuple r in R:

of tuples: n for each tuple s in S:
if(key(r) == key(s)):
Buffer Pool Size B emit(r, s)

(p.... J
-
laa...)| |Lpp..)| |laa...)| |lpp...)
laa..)| [ww.. J||laa..)| |[xx. |

()

5 _ Leans Algorithm Naive NLJ Page NLJ Block NLJ Index NLJ
(sid, eid, date, duration, ...) Cost (inner: S) N +nM

N = 500 500 + 40,000x1000

n = 40,000 = 40,000,500

Tuples per page: 80 Cost (inner: R) M +mN

1000 + 100,000%500
S — Students

d . = 50,001,000
(SL'_naTe’ major ...) Effect of Buffer B>500>N+M
b= Lot Size = 1500
m = 100,000

Tuples per page: 100
Does it matter what the inner relation is?
B buffer size Yes! We want the larger relation inside.

B <102

Poor implementation

We could match multiple tuples at a time for
pages that are loaded

Cost Analysis - Naive NLJ

Page Nested Loops Join

S
R # of pages: M
of pages: N # of tuples: m
of tuples: n
Buffer Pool Size B
(o J
(L)

(aa..)| [pp.. JI{laa..)| [Laa..)
Lpp...)| [[ww..]| |Lpp... J| |Lpp... |
laa...) [Lec...) [xx...]

for each page p, in R:
for each page p; in S:
for each tuple r in p.:
for each tuple s in pq:
if(key(r) == key(s)):
emit(r, s)

~

R — Loans

(sid, eid, date, duration, ..

N = 500
n = 40,000
Tuples per page: 80

)

S — Students

(sid, name, major; ...)
M = 1000

m = 100,000
Tuples per page: 100

Algorithm Naive NLJ Page NLJ Block NLJ Index NLJ
Cost (inner: S) N + nM N + NM

40,000,500 500,500
Cost (inner: R) M + mN M + MN

50,001,000 501,000

Effect of Buffer
Size

B > 500 - N + M = 1500

B buffer size
B <102

Better implementation but...

We could match multiple tuples at a time for

multiple pages of the outer relation that are
loaded

Cost Analysis - Page NLJ

Block Nested Loops Join

S
R # of pages: M szOCk ; éi'zi gagfzs y
of pages: N Buffer Pool Size B # of tuples: m or €ach brock Br 1h R.
of tuples: n B=5 for each page p; in S:
for each tuple r in B,:
f-_ for each tuple s in pq:
o,...) :-m if(key(r) == key(s)):
emit(r, s)

il

iiiid

laa... |
[ww... |

laa... |

Lpp... |
Lpp...)

[XX... |

(aa.. || |laa... |
Lpp...)| |Lpp...)

(cc... |

Algorithm Naive NLJ Page NLJ Block NLJ Index NLJ
R — Loans . N
(sid, eid, date, duration, ...) Cost (inner: S) N +nM N +NM N + [ﬁ] M
N = 500
(B =102) 5007,
n = 40,000 40,000,500 500,500 500 + [ﬁ] 1000 = 5500
Tuples per page: 80 . _
Pl Cost (inner: R) M +mN M+ NM M + [—B]z 2] N
> B} e . (B =102) 50,001,000 501,000 1000 + [@] 500 = 6000
(sid, name, major; ...) 100
M = 1000 Effect of Buffer Size B > 500 >N + M = 1500
m = 100,000

Tuples per page: 100

B buffer size
B <102

Cost Analysis - Block NLJ

Even better implementation but ...
What if we have an index on the inner
relation?

Index Nested Loops Join
Cost of a Lookup

for each tuple r in R:

s = lookup(key(r), index(S)) Index Height of a
if(s): traversal tree (2-4)
emit(r, s)
+ Find page ¥
in file by RID]
MUItiPIe matches Clustered Index Unclustered Index

Index traversal +

Index traversal +
of matching tuples

of matching pages

r

R — Loans

(sid, eid, date, duration, ...

N = 500
n = 40,000
Tuples per page: 80

S — Students

(sid, name, major; ...)
M = 1000

m = 100,000
Tuples per page: 100

Algorithm Naive NLJ Page NLJ Block NLJ Index NLJ
Cost (inner: S) N +nM N+ NM N +n(k)
(B =102 500 + 40,000(2 + 1)
40,000,500 500,500 = 120,500
Cost (inner: R) N +nM N+NM N+ [—N | m
B-2 No index on R by sid
B =102) 50,001,000 501,000 6000
Eﬁect of Buffer B> 500 >N + M
Size

B buffer size
B <102

Compute the full cross product:
Quadratic!

Linear

INLJ uses structure to overcome the need to check dll other tuples

When does an index help?
* n<KMN

* Small number of lookups
» Small buffer

Cost Analysis - Index NLJ

Sort-Merge Join

Sort-Merge Join

=) G2
|. Sort R 'S on join key using
) [external merge sort
(P) —
Do
2. Scan sorted files and
,C’—, ,p’—, umergen
(a..) (2o o | (we]
oo) G]
R S
of pages: N # of pages: M

of tuples: n # of tuples: m

Sort-Merge Join — Merge Pass

left-cursor

AAASAASAL

FHEEFIFET]

i

)

a,a ...
a,a ...
aa ...

e
)

aa ...
C,C ...

P.p ...

L ——
)

P,p ...
p.p ...

right-cursor

\ 4

il

AASAASAA484)

i

right-base

do{

S

key(left-cursor) == key(right-base):
right-cursor = right-base
do{
emit(r, s)
advance(right-cursor)
} while(key(left-cursor) == key(right-cursor))
advance left-cursor

key(left-cursor) > key(right-base):
if(right-cursor > right-base):
right-base = right-cursor
else
advance(right-base, right-cursor)

©,

key(left-cursor) < key(right-base):
advance(left-cursor)

}
while(left-cursor != EOF)

()

Assuming files are sorted

R — Loans
(sid, eid, date, duration, ...)
N = 500 Best Case Cost N + M
n = 40,000 * Single scan advancing cursors left and right!
Tuples per page: 80 * FEquality Join with no duplicates!
- t Linear!
S — Students
(sid, name, major; ...)
M = 1000
m = 100,000 Worst Case Cost nM

Tuples per page: 100
pies PEr pag » Effectively a nested loop join

B buffer size * Single duplicate key on both sides === a cross product! (very unlikely)
B < 102 Quadpratic!

Cost Analysis - Merge Join

R — Loans

(sid, eid, date, duration, ...)
N = 500

n = 40,000

Tuples per page: 80

S — Students

(sid, name, major; ...)

M = 1000

m = 100,000
Tuples per page: 100

Algorithm Block NLJ Sort Merge Join
w0 N+ [%] M (4N ETJ) I\:I_e(r]g\g,e-l_ M)
L.

i :1;(5(VR 16500 7500

B buffer size
B <102

Cost Analysis - SMJ

But we can do better if we can
integrate merge join within the sort
pass!

Sort-Merge Join (No Refinement)

Unsorted input relations

Sort Phase [R] [S J
(Ext. Merge Sort) Split & sort J b JL Split & sort
LJJCJCJ LJJC Iy
Merge Merge
[] []

Merge / Join Phase

[)

Joined output file
created!

Slide Credit: https://thodrek.github.io/cs564-fall | 7/lectures/lecture-17/Lecture_17_Joins.pdf

Sort-Merge Join (With Refinement)

Unsorted input relations .
Given B buffer pages

Sort Phase [R] [S J
(Ext. Merge Sort) Split & sort J L J L Split & sort

CJJEJ 0 cJCJCIC]

<= B-1 total sorted runs

B-way Merge / Join

Merge / Join Phase []
Joined output file
How big is B for this optimization? B = VN + VM created!

Slide Credit: https://thodrek.github.io/cs564-fall | 7/lectures/lecture-17/Lecture_17_Joins.pdf

R — Loans
(sid, eid, date, duration, ...)

N = 500
n = 40,000
Tuples per page: 80

) Algorithm Block NLJ Sort Merge Join SMJ - Refined
S — Students | Cost N Sort + Mer First Sort Pass + Merge

. ge

(sid, name, major; ...) N + [m]M (4N + 4 M) + (N + M) Pass (g)ﬁlidBe]\;)utput)
M = 1000
m = 100,000 B =102 2500
Tuples per page: 100 > VN +VM

- B =55

10500 7500

B buffer size >N +VM

B <102

Cost Analysis - SMJ

Grace Hash Join

Naive Hash Join

()
i) v Probe
(o) 0 _b.. 1[N
T
5 In
Co) v L
:
IC»--- l a a,a...
) 3 x o
5w
i
6 C..
\ J

Build in-memory hash table of size
(B-2) using hashing function h(k)

lifidiiiiii

Scan

Simple Algorithm
Cost N + M

Memory requirement
* min(N,M)< B-—2

What if the hash table of the smaller
relation doesn't fit?

laa... | |l pp.. [pp... | aa.. |
(aa...)| [Lpp.. (pp... | aa.. |
[ww... || |l xx... [cc... |

Divide / Partition Phase * Use a partitioning hash function to divide each table
into B — 1 uniform partitions

Conquer Phase For each partition P;
* Build an in-memory hash table using the smaller

partition(R): P;(R)

* Hash table has to fit in B — 2 buffers

* Scan each page from S's partition P;(S) and probe
the in-memory hash-table

Grace Hash Join

Cost Partitioning Phase + Matching Phase
(2N + 2M) + (N+ M) = 3(N+ M)

Memory Requirement R is the smaller relation
Partitioning Phase divides R into (B-1) partitions of size Y

Matching Phase requires each partition to be:
N

. <B-2
B—1

« N<(B-2)B-1)

« B>+/N

The probing relation S can be quite big, there are no
restrictions on the size of its partitions!

Cost and Memory Analysis of Grace Hash Join

R — Loans

(sid, eid, date, duration, ...)
N = 500

n = 40,000

Tuples per page: 80

S — Students

(sid, name, major; ...)

M = 1000

m = 100,000
Tuples per page: 100

Algorithm Block NLJ SMJ - Refined Grace Hash Join

Cost N + [L‘ M 3N + 3M 3N + 3M
B-2

B =102

> VN +VM

B =55

> VN + VI 10500

B buffer size
B <102

Cost Analysis - Grace Hash Join

R — Loans

(sid, eid, date, duration, ...

N = 500
n = 40,000
Tuples per page: 80

S — Students

(sid, name, major, ...)

M = 1000

m = 100,000
Tuples per page: 100

B buffer size
B <102

Algorithm Block NLJ SMJ - Refined Grace Hash Join
Cost N + [Ll M 3N + 3M 3N + 3M
B -2

B =102
> VN ++VM
B =55

10500
>N+ VM
B =25 >+/N 22500 Needs more passes

Cost Analysis - Grace Hash Join

Summary

The Grace Hash Join
partitioning breaks
down the grid into
smaller grids for
further matching

e e

X S T T O T © ©

The SMJ uses order
to avoid searching
the whole grid and
establishing search
boundaries

BNLJ doesn’t take
advantage of
structure — we
explore the whole
grid for matches!

Visual Comparison - BNLJ, SMJ vs. GHJ

Nested Loops Join Works for arbitrary join conditions

Index Nested Loops Join If you have an index, equi-join and a small number of
lookupsln < NM

Sort-Merge/Hash Join * Linear IO complexity

* No index required

* Hash is better if one of the relations is much smaller

* Sort-Merge is better if order is required or If the
relations are already sorted (perhaps from a previous
join).

A typical DBMS implements all
of these and vses a query
optimizer to select the best

join for a given query plan!

Key Takeaways

