
Lab 5 - Virtual Memory
Operating Systems, CS-UH 3010

Assigned: Nov 15, 2022 Due: Nov 30, 2022

It’s the last lab of the course! We feel good :)
Do not share the start codes or virtual image provided in this lab, as they were kindly provided by Princeton

without permission to redistribute.

1 Overview

In this project, you will add memory management and support for virtual memory to the kernel.
Your previous kernels used a single global memory layout, where the kernel and all processes shared access to the
same memory, and granted kernel permissions to all user processes.
Now, you will extend the provided kernel with a demand-paged virtual memory manager and restrict user processes
to user mode privileges (ring 3) instead of kernel mode privileges (ring 0). You will implement:

1. virtual address spaces for user processes

2. page allocation

3. paging to and from disk

4. page fault handler

Specifically, it will be your job to modify memory.h and memory.c.
As a result, each process will get its own address space and will not be allowed to use certain instructions
that could be used to interfere with the rest of the system. Assuming the kernel and kernel threads have no
bugs/vulnerabilities, this will prevent buggy or malicious processes from corrupting the kernel and other processes.
Furthermore, paging memory will allow programs to use more data than is available in RAM.
We also provide six test programs (process[1-4].c and th[1-2].c) that automatically test your memory
manager when built. See Section 5 for instructions on how to use these tests.
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1.1 Finding Your Way Around this Project

The code for this project is a bit different from the other projects so far (e.g., PCB structure is different.) Don’t
Panic!
You will need to look at kernel.[ch] and tlb.h to find useful data structures and functions. The test processes
and kernel show you how your memory manager will be used.
There are many constants in these files that you’ll want to use:

grep "PROCESS_STACK" *.h
grep "PROCESS_START" Makefile
grep "PAGE" *.h

Note: this start code ships with its own bochs VGAROM and ROM. You may have to edit the provided bochsrc
to get it to point to the right places... but it should be okay!

1.2 Steps

1. Review project specs and download the start code.

2. Prepare your design review

3. Complete memory.h, and memory.c

4. Compile and build the disk image.

5. Test Run the Bochs emulator and play with the small shell program.

6. Complete the general project requirements

7. Submit

2 Page Table Setup

You must set up a two-level page table to map virtual to physical addresses, as described in class and in your
course textbook, for each process. The i386 architecture uses a two-level table structure: one page of memory is
set aside as a directory that has 1024 entries pointing to the actual page tables. Each of these page tables also
has 1024 entries describing pages of virtual memory. You need to understand this structure well.
That last statement needs to be reiterated. You will need to understand what page table entries must look like.

• How are flags set?

• How do you map a virtual address to a particular entry?

• How do you store the physical page address for the entry?

Make use of the provided functions init_ptab_entry(), insert_ptab_dir(), and set_ptab_entry_flags()
when setting page table entries, page directory entries, and page entry flags.
Kernel threads all share the same kernel address space and screen memory, so they can use the same page table.
Use N_KERNEL_PTS (the number of kernel page tables in the kernel page directory) to determine how many kernel
pages tables to make. Each kernel page table should contain PAGE_N_ENTRIES (1024) entries, until the page
base address of a page reaches MAX_PHYSICAL_MEMORY. Notice that our initial values for the constants given in
memory.h can all fit in one table. It’s OK to map more than required (for example, you can map the whole page
table).
Implement init_memory() to initially map your physical memory pages to run the kernel threads.
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3 User Process Virtual Address Space

Map kernel and screen to their physical addresses (virtual = physical)
Map addresses for the process’ code and data segments to its own pages. This means that each process has
four types of pages: page directory, page table, stack page table, and stack pages. Look at PROCESS_START and
PROCESS_STACK for an idea of where in virtual memory everything resides.
You should allocate N_PROCESS_STACK_PAGES pages for a process stack. Note

• Kernel memory: inaccessible

• Screen memory: read-write

• Other memory: read-write

Implement setup_page_table() to load the code and data of a user process into its virtual address space.
You will need to allocate its pages and load the process. The page directory of a task is determined by
pcb->page_directory. This needs to be set when you’re setting up the page tables.
There are two more things that you will need to set up the address space and that will help you with keeping
track of page mappings:

1. You will need a way to obtain the physical address of a page based on its virtual address. To do this,
implement the page_addr() function.

2. To help you keep track of all pages and their metadata (e.g. whether or not it’s pinned), you should define
the page_map_entry_t data structure in memory.h

4 Page Allocator

Write a physical page frame allocator, page_alloc(), to prepare a free page of physical memory. If there are free
pages available, the job is simple: pick one. Otherwise, you must choose one to page out to disk, using the policy
implemented in page_replacement_policy(), and then reset the page to be used again. For this assignment,
any simple replacement policy is acceptable (e.g. FIFO).
Some pages may be so important or frequently used (or it might just be more convenient for you) that they
should never be paged out. For example, you should never evict page tables. Such pages are pinned. Implement
a mechanism for pinning pages so that they are never evicted by your page allocator.
We can artificially limit the amount of physical RAM available to your OS by setting PAGEABLE_PAGES to some
lower number (try the 20s) in memory.h. This way, the total available physical memory is smaller than the total
memory needed to run all the processes, requiring the system to use your paging implementation. This is a helpful
value to change for testing.
Note: You will probably want to clear the page at this point. Doing this later will be hard!

4.1 Paging to/from Disk

If there are no more free physical pages for your page allocator to allocate, you must choose a page to evict,
writing it to disk using scsi_write() in scsi.h: implement page_swap_out(). You also must page in from
disk in page_swap_in().
Check out the PCB fields swap_loc and swap_size. They will be very helpful here.
You may assume that processes do not use a heap for dynamic memory allocation: a process does not change
size. In this case, the user memory space of a process contains an interval of pcb->swap_size sectors starting
from PROCESS_START, plus the memory for user stack.
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Note: This is a good place to make sure that you are flushing the TLB appropriately. You will find the functions
in scsi.h helpful for this part of the assignment.

4.2 Page Fault Handler

You will need to write a page fault handler in page_fault_handler() to handle the case where a process tries
to access a page that is not currently in RAM. The handler should:

1. Find the faulting page in the page directory and page table.

2. Allocate a page of physical memory.

3. Load the contents of the page from the appropriate swap location on the USB disk. (How are you going to
figure out the swap location?)

4. Update the page table of the process.

page_fault_handler() may be interrupted, which means there might be two concurrent
page_fault_handler() calls. You will want to use some synchronization primitives to handle this.

5 Testing

Unlike project3, which could be broken down into several phases for testing, you will need to understand and
implement project 5 in its entirety before you can test your work.
This will be frustrating, but Don’t Panic! The test processes that are part of the start code and are built into the
disk image upon compilation should demonstrate where your problems lie.
To test your project 5, simply make your code, and run with Bochs. Note: Don’t waste time trying to test your
work on a real machine using a USB drive.

6 Design Review

As always, please take a look at what we expect from you in general. This project will have, like the others, a
design review worth 5 points. We’ll ask about the following things:

1. Page table + Page Faults (2 points): Explain how virtual addresses are translated to physical addresses
on i386. When are page faults triggered? How are you going to figure out what address a fault occurred
on?

2. Page Map (1 point): You’re going to need a data structure to track information about pages. What
information should you track?

3. Calling Relationships (2 point) For the functions page_alloc, page_swap_in, page_swap_out, and
page_fault_handler, please describe the caller-callee relationship graph.

Also, you should read through the whole project description before showing up to design review. As always, come
into the review prepared with your answers to all questions written down/typed up.
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7 Hints

As mentioned in the section on the page fault handler, the page fault handler can be interrupted. Therefore, you
may want to implement your memory manager using a synchronization primitive so that only one process can
have its page fault handled at any given time. Keep in mind that there may also be other functions that can be
interrupted, so you will want to handle all such cases in the same way.
Which pages are pinned and which aren’t? The specs say that each process keeps track of four types of pages:
page directories, page tables, stack page tables, and stack pages. These four types of pages can be pinned. But
it should be implied that processes also do keep track of pages (corresponding to page table entries). These are
the ones that are NOT pinned.
What does “It’s OK to map more pages than required” (in page table setup) mean?. This means that
you can initialize more page table entries/page directory entries. In part, you will probably want to do this to
align a whole page directory/table to a multiple of PAGE_SIZE, and in part to simply fill in the whole page (think
of this as initializing an array to all zeros). What this doesn’t mean is that you’re allocating more pages than
required.
What’s the role of screen memory? Screen memory is part of the kernel’s memory space, user processes need
to be given permission to read and write the screen when memory is initialized. This is only done once.
What does clearing the page mean? Clearing the page simply means that at the end of allocating a new page,
they should clear it in memory (i.e. set the page to all zeros or something like that) and also reset the page table
entry flags.
What is the page map? The page map is more of an internal data structure that keeps track of metadata (e.g.
swap location, pinned?, virtual addr). This array is of size PAGEABLE_PAGES (initialized to 24, but you should
eventually increase this value to 30) because it keeps track of all pages currently loaded in memory. Related to
this is also what the parameter i represents in certain functions (page_addr, swap_in, swap_out). This i is an
index in the page map.
You don’t need to worry about code vs. data segments (that’s why we have “normal” process pages vs. stack
pages).
You don’t need to implement the TLB, that’s done for you. Think of the TLB as a black box where the interface
is flush_tlb_entry().
If you grep TODO, then you can ignore all TODOs that aren’t in memory.[ch] These are remnants of the original
developers’ code.
Here is a checklist to help you complete this project. Implement the functions roughly in this order:

1. memory.h

2. page_map_entry_t

3. memory.c

4. page_addr()

5. page_replacement_policy()

6. page_alloc()

7. init_mem()

8. setup_page_table()

9. page_swap_in() and page_swap_out()

10. page_fault_handler()
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7.1 Submission

Don’t forget to complete the general requirements for each project!
In particular, you need to submit a README file, which concisely describes your design and implementation, and
what parts work and what parts you didn’t get to work. You don’t have to repeat anything you presented in the
design review.

8 Grading Rubric

The project is worth 25 points, with four possible bonus points. The breakdown is as follows:

Task Deliverables Points

Design review Correct descriptions of the main concepts of the project and completion of tasks
assigned by Nabil.

5

Threads run Kernel threads running correctly. 6
Directory Setup Correct process directory set up in setup page table. 3
Swap in Processes run correctly with a larger number of pageable pages. This requires

the proper implementation of swap in.
3

Swap out Swap out correct – processes run correctly when pageable pages is low. 6
Kernel Protected Processes unable to write to kernel memory (except for screen addresses). 2
Bonus FIFO (2nd chance) FIFO with second chance works correctly. +2
Bonus (NRU) An implementation of not recently used page replacement algorithm works cor-

rectly.
+2
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