
OS LAB1: ASSEMBLY TUTORIAL

Miro Mannino
02 September 2022

X86 REGISTERS

X86 REGISTERS

The x86 architecture contains
eight general-purpose 32-bit
registers.

These registers are mainly used
to perform address
calculations, arithmetic, and
logical calculations.

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP

AH AL

BH BL

CH CL

DH DL

AX

BX

CX

32 bits
16 bits

8 bits

DX

SI

SP

DI

BP

2

X86 REGISTERS

Conventionally these registers are used in the following way:

EAX Accumulator for operands and results
EBX Used to address memory in the DS segment
ECX Used as counter for string or loops
EDX Used as accumulator’s backup (e.g. I/O pointer)
ESI Instruction source pointer in the DS register operations.
EDI Instruction destination pointer in the ES segment
EBP Pointer to data on the stack in the SS segment
ESP Stack pointer in the SS segment

3

X86 SEGMENT REGISTERS

There are also other segment registers:

CS Code segment register
SS Stack segment register
DS Data segment register
ES Data segment register
FS Data segment register
GS Data segment register

The four data segment registers provide flexible and efficient ways to
access data.

4

X86 REGISTERS

32-bit registers EAX, EBX, ECX,
and EDX can also be treated as
a 16-bit register or as two 8-bit
registers. For example, the least
significant 2 bytes of EAX are
called AX, and the least
significant byte of AX is called
AL.

32-bit registers ESI, EDI, EBP,
and ESP can also be treated as
a 16-bit register.

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP

AH AL

BH BL

CH CL

DH DL

AX

BX

CX

32 bits
16 bits

8 bits

DX

SI

SP

DI

BP

5

ENDIANNESS

The x86 architecture is little-endian. This means that multi-byte
values are written with the least significant byte first.

For example, the 32-bit number 0xA3A2A1A0 is represented as:

0xA0
10100000101000011010001010100011

0xA10xA20xA3

0123 Memory locations

Binary

Notice that if EAX contains this number, AX would be 0xA1A0, and AL
would be 0xA0.

Note how this order only affects the bytes, not the bits.

6

X86 ASSEMBLY INSTRUCTIONS

The following templates are used for instructions:
instr ; instruction with no argument
instr arg ; instruction with one argument
instr arg1, arg2 ; instruction with two arguments
instr arg1, arg2, arg3 ; instruction with three arguments

For example, mov is an instruction to copy data from a source to a
destination.
mov src, dest

x86 Assembly instructions are MANY, so here we are just going to
cover the basics, not single instructions. Refer to Generating
assembly from C code to get examples.

7

INTEL VS AT&T ASSEMBLY SYNTAX

Note that the order of the operands can change depending on the
assembler.
mov dest, src ; Intel Syntax
mov src, dest ; AT&T assembly syntax (GNU assembly syntax)

AT&T Assembly Syntax:

∙ Compatibility with the GCC inline assembly syntax
∙ Register names are prefixed with % (e.g. %eax)
∙ Constants are prefixed with $
∙ As the example above, the source is on the left, the destination
on the right

8

AT&T ASSEMBLY SYNTAX: OPERATION SUFFIXES

Instructions are generally suffixed with the letters ”b”, ”s”, ”w”, ”l”, ”q”
or ”t” to determine what size operand is being manipulated.

∙ b = byte (8 bit).
∙ s = single (32-bit floating point).
∙ w = word (16 bit).
∙ l = long (32 bit integer or 64-bit floating point).
∙ q = quad (64 bit).
∙ t = ten bytes (80-bit floating point).

If the suffix is not specified, the operand size is inferred from the
size of the destination register operand.

9

ASSEMBLER DIRECTIVES

Assembler directives begin with a period “.”

∙ These directives are not instructions
∙ .byte, .word, .asciz reserve some memory
∙ .text is used to mark the beginning of the code segment
∙ .data is used to mark the beginning of the data segment
∙ .bss holds zero-initialized data
∙ .globl defines a list of global symbols

10

MEMORY ADDRESSING

There are several ways addresses can be used (here we show them
with the mov instruction but it can be done on other instructions).
mov $6, %eax # copies the value 6 in EAX

mov %ebx, %eax # copies the value in EBX in EAX

mov (%ebx), %eax # copies 4 bytes from the memory
address in EBX into EAX register

mov $message1, %eax # Pointer to message1 is copied in EAX

message1:
.asciz ”Hello!” # asciz puts a 0 byte at the end

11

REAL MODE

Real Mode is a simplistic 16-bit mode that is present on all x86
processors, all x86 processors begin execution in Real Mode for retro
compatibility reasons.

∙ Modern operating systems run in Protected Mode, due to Real
Mode limitations.

∙ Older operating systems (e.g. DOS) instead were running in Real
Mode, since it was the only mode available at that time.

∙ Programs can access any memory address (no protections)
∙ 1MB memory
∙ Accessing more than 64kB requires to use segments

This is the mode you are going to use for your projects.

12

REAL MODE: SEGMENTS

Real Mode uses addresses as two values: segment and offset

∙ The address is written as segment:offset (e.g. 0x1:0x42)
∙ A segment is 64kB
∙ The offset part is 16-bit
∙ The real address is 16 ∗ segment+ offset
∙ Address range is 0x00000 to 0xFFFFF
∙ 1MB of data can be seen with a full 20-bit address

Note, the full address notation on AT&T syntax is:

segment:displacement(base register, index register, scale factor)

This is translated to:

16 * segment + base register + displacement + index register * scale factor

13

CALLS

Calling a function can be done using the instruction CALL

∙ Before calling the function all the parameters for the function
are added to the stack.

∙ The CALL instruction pushes the address of the next instruction
into the stack (i.e. the instruction to execute after the function
returns).

∙ It modifies the instruction pointer %eip to the first instruction in
the function.

14

INTERRUPTS

Interrupts are like calls to subroutines but initiated by peripheral
hardware instead of CALL.
Interrupts are asynchronous and can occur anytime during the
execution.

Interrupt handling is a better alternative than polling, which is
periodically reviewing the status of peripherals.

Interrupts can be generated by software using the assembly
instruction INT X where X is the number of the interrupts. For
example, INT 0x13.

15

RETURNING FROM INTERRUPTS

At the end of the interrupt service subroutine, the instruction
RETFIE (i.e. Return From Interrupt) is used.

After that, the program flow will be restored to where it was initially,
recovering the return address previously stored on the stack (similar
to CALL).

16

GENERATING ASSEMBLY FROM C CODE

Assembly can be generated from C source code. Let’s take this
simple Hello world as an example we save in a file called hello.c:
#include <stdio.h>

int main(void) {
printf(”Hello, world!\n”);
return 0;

}

Now we compile it and we run:
$ gcc -o hello hello.c
$./hello
Hello, world!

17

GENERATING ASSEMBLY FROM C CODE

Now we want instead to generate the equivalent assembly code
instead:
gcc -S -m32 -fno-asynchronous-unwind-tables hello.c

This creates a file ”hello.s”.

To compile to an executable instead from the assembly code and
run:
$ gcc -o hello_2 -m32 hello.s
$./hello_2
Hello, world!

Try creating simple code and searching online for the corresponding
assembly parts. This is a good way to learn! Also, this method can be used
to have the compiler helping you out with assembly!

18

QUESTIONS?

19

	x86 Registers

