OS LAB1: BOOTLOADER

Miro Mannino
02 September 2022

LABT OVERVIEW

Write a bootloader: bootblock.s

- Set up and start running the OS
- Written in x86 assembly

Implement a tool to create a bootable OS image: createimage

- The bootable OS image contains bootloader and kernel
- File structure: become familiar with ELF format

LAB ORGANIZATION

There will be a lab recitation for every lab. Lab submissions will be
done in two phases:

- 10-15 minutes to present your design of the project
- Due date one week before the final project due date
- You can use flow charts or pseudo code for demonstration

- By this time you should have very clear idea on what you are going
to do.

- Code submission:
- To submit:
https://www.dropbox.com/request/89Wdpln7F1PwlYi97qdg
- Format: Single zip folder LAB1-netld1-netld2-netld3.zip
- Include inside README.md with some explanation about the code,
the decisions, and the weakness of your solution.

Deadlines:

- Design Review: Sep 9, 2022, 3-5pm
- Due Date Sep 20, 2022, 11:55pm

https://www.dropbox.com/request/89Wdp1n7FlPwJYi97qdg

BOOT PROCESS

BOOT PROCESS: BIOS

The RAM is empty on startup. 0x100000
2 - 1MB
% BIOS
The x8§ proce;sorhbegnls g% — 0xFO000
executing at the sica 2g
8 phy E% 0xC8000
address OxFFFFFFFO. e Video BIOS
“E 0xC0000
E Video Display Memory

This address is mapped to a 0xA0000

ROM chip that contains the
Usable Memory

code.
0x500
BIOS data Area
The BIOS performs tests and 0x400
initializations. Eventually, the RealMode T ... 000
X

BIOS starts the boot loading.

BOOT PROCESS: BIOS BOOT LOADING

> 0x100000
=1MB
The BIOS searches for an % BIOS
available storage media to boot 22 OXFO000
88 Devices
from. 25 0xC8000
g; Video BIOS
. =E 0xC0000
It loads the first sector (i.e. % | Video Display Memory
Master Boot Record) of the first 0xA0000
bootable device into RAM at
29 Bootloader Ox7E00
0x7C00. go 0x7C00
The BIOS transfers control to 0x500
. BIOS data Area
the bootloader (i.e. JMPs to 0x400
address 0x7C00). Real Mode IVT |

0x0

BOOTLOADER

The bootloader task is to: » 0x100000
z -
Load the kernel in memory o5 e
o 23 0xF0000
and initialize its stack gg Devices
: 5 0xC8000
. P
When that is done, transfer 28 —
control to the kernel T3 0xC0000
’é Video Display Memory
- The loaded kernel can be 0xA0000
K Bootloader
large enough to overwrite Kernel Stack
the bootloader. Before
loading the kernel it is e
better to relocate the 0x500
bootloader to a higher ploSdatafrea | w00
address so it can’'t be Reslieda
0x0

overwritten.

BIOS SERVICES

The BIOS provides services callable through the INT instruction.
For example:

- INT $0x10 for video services
- INT $0x13 for disk services
- INT $0x16 for keyboard services

Each service category has different functions that can be called. For
example, function 14 is for displaying a character. The function
number goes to register %AH. For example, to print:

movb 'A', %al

movb $0x0E, %ah
movl $0x0002, %ebx

AL = code of character to display
Calling BIOS function 14 (print)
%bh = DisplayPage = 0,

%b1l = Green Color = 0x02

Calling BIOS.Teletype

H o B B R

int $0x10

https://en.wikipedia.org/wiki/INT_10H

BIOS SERVICES FOR BOOLOADER

The BIOS provides functions for disk access using the interrupt
INT Ox13.

Two families of BIOS functions for disk access:

- Using Cylinder, Head, Sector (i.e. CHS), function 2 in this case
- Using Logical Block Addressing (i.e. LBA)

We will use function 2

BIOS function 2 to read from disk:

- %ah: register set to 2 to call this function

- %al: is the number of sector to read

- %ch: plus bits 6-7 from %cl: cylinder number

- %cl: bits 0-5: sector number

- %dh: starting head number

- %dl: drive number (e.g. 0 is floppy disk A;, 3 is drive C:)

- %es:%bx: pointer to memory region to place data read from
disk. (remember the segment:offset notation)

‘cy7 b cy5 cyd cyd cy2 oyl cyO‘cyQ cy8 se5 se4 se3 se2 sel seO‘
| %cl

Returns a result in %ah: 0 if successful, 1if an error occurred.

More info and examples: https://en.wikipedia.org/wiki/INT_13H

https://en.wikipedia.org/wiki/INT_13H

ELF FORMAT

Executable and Linkable Format
created after compiling and linking.

It contains all the code compiled and

in a specific format readable by an ELF Header

operating system. Program Header Table
Segment 1

But, what we want instead is to extract Segment 2

the code from it to use as Kernel.

Section Header Table

You can use readelf to display info
about any program headers. For
example, readelf -1 touch

CREATEIMAGE

createimage.given extracts the code from the ELF file. But, during
Lab7 you will need to implement createimage to do the same.

- Study the ELF format

- Remember to pad the code to a complete sector (512 btyes),
otherwise, two adjacent segments in the executable file may not
be contiguous when loaded into memory.

- Mark the image bootable (i.e. write 0x55 OxAA at the end of the
sector)

- Compare the behavior of your implementation with
crateimage.given

- Implement --extended to print info

QUESTIONS?

	Boot Process

