
OS LAB1: BOOTLOADER

Miro Mannino
02 September 2022

LAB1 OVERVIEW

Write a bootloader: bootblock.s

∙ Set up and start running the OS
∙ Written in x86 assembly

Implement a tool to create a bootable OS image: createimage

∙ The bootable OS image contains bootloader and kernel
∙ File structure: become familiar with ELF format

1

LAB ORGANIZATION

There will be a lab recitation for every lab. Lab submissions will be
done in two phases:

∙ 10-15 minutes to present your design of the project
∙ Due date one week before the final project due date
∙ You can use flow charts or pseudo code for demonstration
∙ By this time you should have very clear idea on what you are going
to do.

∙ Code submission:
∙ To submit:
https://www.dropbox.com/request/89Wdp1n7FlPwJYi97qdg

∙ Format: Single zip folder LAB1-netId1-netId2-netId3.zip
∙ Include inside README.md with some explanation about the code,
the decisions, and the weakness of your solution.

Deadlines:

∙ Design Review: Sep 9, 2022, 3-5pm
∙ Due Date Sep 20, 2022, 11:55pm

2

https://www.dropbox.com/request/89Wdp1n7FlPwJYi97qdg

BOOT PROCESS

BOOT PROCESS: BIOS

The RAM is empty on startup.

The x86 processor begins
executing at the physical
address 0xFFFFFFF0.

This address is mapped to a
ROM chip that contains the
Basic Input/Output System
(BIOS) code.

The BIOS performs tests and
initializations. Eventually, the
BIOS starts the boot loading.

BIOS data Area

Real Mode IVT
(Interrupt Vector Table)

Usable Memory

Video Display Memory

Video BIOS

Devices

BIOS

R
O
M
and

hardw
are

m
apped

(S
hadow

R
A
M
)

0x400

0x500

0xA0000

0xC0000

0xC8000

0xF0000

0x0

0x100000
= 1MB

4

BOOT PROCESS: BIOS BOOT LOADING

The BIOS searches for an
available storage media to boot
from.

It loads the first sector (i.e.
Master Boot Record) of the first
bootable device into RAM at
0x7C00.

The BIOS transfers control to
the bootloader (i.e. JMPs to
address 0x7C00).

BIOS data Area

Real Mode IVT
(Interrupt Vector Table)

Usable Memory

Video Display Memory

Video BIOS

Devices

BIOS

R
O
M
and

hardw
are

m
apped

(S
hadow

R
A
M
)

0x400

0x500

0xA0000

0xC0000

0xC8000

0xF0000

0x0

0x100000
= 1MB

0x7C00
0x7E00512

bytes Bootloader

5

BOOTLOADER

The bootloader task is to:
∙ Load the kernel in memory
and initialize its stack

∙ When that is done, transfer
control to the kernel

∙ The loaded kernel can be
large enough to overwrite
the bootloader. Before
loading the kernel it is
better to relocate the
bootloader to a higher
address so it can’t be
overwritten.

BIOS data Area

Real Mode IVT
(Interrupt Vector Table)

Video Display Memory

Video BIOS

Devices

BIOS

R
O
M
and

hardw
are

m
apped

(S
hadow

R
A
M
)

0x400

0x500

0xA0000

0xC0000

0xC8000

0xF0000

0x0

0x100000
= 1MB

BootloaderBootloader
Kernel Stack

Kernel

6

BIOS SERVICES

The BIOS provides services callable through the INT instruction.

For example:
∙ INT $0x10 for video services
∙ INT $0x13 for disk services
∙ INT $0x16 for keyboard services

Each service category has different functions that can be called. For
example, function 14 is for displaying a character. The function
number goes to register %AH. For example, to print:

movb 'A', %al # AL = code of character to display
movb $0x0E, %ah # Calling BIOS function 14 (print)
movl $0x0002, %ebx # %bh = DisplayPage = 0,

%bl = Green Color = 0x02
int $0x10 # Calling BIOS.Teletype

https://en.wikipedia.org/wiki/INT_10H

7

BIOS SERVICES FOR BOOLOADER

The BIOS provides functions for disk access using the interrupt
INT 0x13.
Two families of BIOS functions for disk access:

∙ Using Cylinder, Head, Sector (i.e. CHS), function 2 in this case
∙ Using Logical Block Addressing (i.e. LBA)

We will use function 2

8

BIOS INT 0X13

BIOS function 2 to read from disk:

∙ %ah: register set to 2 to call this function
∙ %al: is the number of sector to read
∙ %ch: plus bits 6-7 from %cl: cylinder number
∙ %cl: bits 0-5: sector number
∙ %dh: starting head number
∙ %dl: drive number (e.g. 0 is floppy disk A:, 3 is drive C:)
∙ %es:%bx: pointer to memory region to place data read from
disk. (remember the segment:offset notation)

cy7 cy6 cy5 cy4 cy3 cy2 cy1 cy0 cy9 cy8 se5 se4 se3 se2 se1 se0
%ch %cl

Returns a result in %ah: 0 if successful, 1 if an error occurred.

More info and examples: https://en.wikipedia.org/wiki/INT_13H
9

https://en.wikipedia.org/wiki/INT_13H

ELF FORMAT

Executable and Linkable Format
created after compiling and linking.

It contains all the code compiled and
in a specific format readable by an
operating system.

But, what we want instead is to extract
the code from it to use as Kernel.

You can use readelf to display info
about any program headers. For
example, readelf -l touch

ELF Header
Program Header Table

Segment 1
Segment 2

...
Section Header Table

10

CREATEIMAGE

createimage.given extracts the code from the ELF file. But, during
Lab1 you will need to implement createimage to do the same.

∙ Study the ELF format
∙ Remember to pad the code to a complete sector (512 btyes),
otherwise, two adjacent segments in the executable file may not
be contiguous when loaded into memory.

∙ Mark the image bootable (i.e. write 0x55 0xAA at the end of the
sector)

∙ Compare the behavior of your implementation with
crateimage.given

∙ Implement --extended to print info

11

QUESTIONS?

12

	Boot Process

