
OS LAB2: NON-PREEMPTIVE KERNEL

Miro Mannino
25 September 2022



LAB2 OVERVIEW

∙ Done with the Bootloader!
∙ Now we want to work on the actual kernel
∙ Add multiprogramming to the kernel to be able to run multiple
programs at the same time

∙ Non-preemptive scheduler
∙ User space processes and kernel threads
∙ Process Control Blocks

∙ Context switching Timing
∙ Mutual exclusion Lock

1



KERNEL THREADS AND USER SPACE PROCESSES

Implement context switch to switch between the process listed in
task[] in tasks.c

∙ Kernel threads
∙ task1(clock_thread()) is defined in th1.c
∙ task2(thread2()) is defined th2.c
∙ task3(thread3()) is defined in th2.c

∙ User space processes
∙ Task4-5 were defined process[1-2].c
∙ Look at process1.c and try to understand it

Implement synchronization primitives

2



ASSUMPTIONS

∙ Protected Mode
∙ No more segment registers: 32 bit memory
∙ No more BIOS

∙ Non-Preemptive Tasks:
∙ Run code until yield, block, or exit

∙ Fixed Number of Tasks:
∙ Allocate per-task state (PCB) statically in your program at compile
time in kernel.c:_start()

∙ Fixed Task Stack Size

3



NON-PREEMPTIVE

∙ do_yield() & do_exit() within the kernel (kernel threads
can call these directly)

∙ yield() & exit() for processes (dispatches a desire to call
do_yield() or do_exit() to the kernel)

∙ User processes use library syslib.h for these
∙ Threads need to explicitly call yield() or exit(), in order to
invoke the scheduler, otherwise a thread can run forever.

∙

4



YIELD

∙ When yield is called, the “context” of a task (thread or
process) must be saved

∙ Process Control Block (PCB)
∙ Process ID (PID)
∙ Stack Info
∙ Registers
∙ CPU Time
∙ Etc.

∙ Once the context is saved, the scheduler is run to pick a new
task

5



PICKING A NEW TASK

∙ All tasks are waiting in a queue to be run
∙ Pick the next one from the front
∙ Restore its state from the PCB
∙ Return to where the task was executed before

6



MUTUAL EXCLUSION

Spinlock implementation is provided, you must implement a
blocking lock

∙ lock_init(lock_t * l)
∙ lock_acquire(lock_t * l)
∙ lock_release(lock_t * l)

7



QUESTIONS?

8


