

Chapter 8
Assemblers, Disassemblers, Linkers, and
Loaders

An assembler, like a compiler, is a converter from source code to target code, so
many of the usual compiler construction techniques are applicable in assembler
construction; they include lexical analysis, symbol table management, and back-
patching. There are differences too, though, resulting from the relative simplicity of
the source format and the relative complexity of the target format.

8.1 The tasks of an assembler

Assemblers are best understood by realizing that even the output of an assembler
is still several steps away from a target program ready to run on a computer. To
understand the tasks of an assembler, we will start from an execution-ready program
and work our way backwards.

8.1.1 The running program

A running program consists of four components: a code segment, a stack segment,
a data segment, and a set of registers. The contents of the code segment derive
from the source code and are usually immutable; the code segment itself is often
extendible to allow dynamic linking. The contents of the stack segment are mutable
and start off empty. Those of the data segment are also mutable and are prefilled
from the literals and strings from the source program. The contents of the registers
usually start off uninitialized or zeroed.

The code and the data relate to each other through addresses of locations in the
segments. These addresses are stored in the machine instructions and in the prefilled
part of the data segment. Most operating systems will set the registers of the hard-
ware memory manager unit of the machine in such a way that the address spaces

363
 Springer Science+Business Media New York 2012©

D. Grune et al., Modern Compiler Design, DOI 10.1007/978-1-4614-4699-6_8,

364 8 Assemblers, Disassemblers, Linkers, and Loaders

of the code and data segments start at zero for each running program, regardless of
where these segments are located in real memory.

8.1.2 The executable code file

A run of a program is initiated by loading the contents of an executable code file
into memory, using a loader. The loader is usually an integrated part of the operat-
ing system, which makes it next to invisible, and its activation is implicit in calling
a program, but we should not forget that it is there. As part of the operating sys-
tem, it has special privileges. All initialized parts of the program derive from the
executable code file, in which all addresses should be based on segments starting
at zero. The loader reads these segments from the executable code file and copies
them to suitable memory segments; it then creates a stack segment, and jumps to a
predetermined location in the code segment, to start the program. So the executable
code file must contain a code segment and a data segment; it may also contain other
indications, for example the initial stack size and the execution start address.

8.1.3 Object files and linkage

The executable code file derives from combining one or more program object files
and probably some library object files, and is constructed by a linker. The linker
is a normal user program, without any privileges. All operating systems provide at
least one, and most traditional compilers use this standard linker, but an increas-
ing number of compiling systems come with their own linker. The reason is that a
specialized linker can check that the proper versions of various object modules are
used, something the standard linker, usually designed for FORTRAN and COBOL,
cannot do.

Each object file carries its own code and data segment contents, and it is the task
of the linker to combine these into the one code segment and one data segment of
the executable code file. The linker does this in the obvious way, by making copies
of the segments, concatenating them, and writing them to the executable code file,
but there are two complications here. (Needless to say, the object file generator and
the linker have to agree on the format of the object files.)

The first complication concerns the addresses inside code and data segments. The
code and data in the object files relate to each other through addresses, the same way
those in the executable code file do, but since the object files were created without
knowing how they will be linked into an executable code file, the address space
of each code or data segment of each object file starts at zero. This means that all
addresses inside the copies of all object files except the first one have to be adjusted
to their actual positions when code and data segments from different object files are
linked together.

8.1 The tasks of an assembler 365

Suppose, for example, that the length of the code segment in the first object file
a.o is 1000 bytes. Then the second code segment, deriving from object file b.o,
will start at the location with machine address 1000. All its internal addresses were
originally computed with 0 as start address, however, so all its internal addresses
will now have to be increased by 1000. To do this, the linker must know which
positions in the object segments contain addresses, and whether the addresses refer
to the code segment or to the data segment. This information is called relocation
information. There are basically two formats in which relocation information can
be provided in an object file: in the form of bit maps, in which some bits correspond
to each position in the object code and data segments at which an address may be
located, and in the form of a linked list. Bit maps are more usual for this purpose.
Note that code segments and data segments may contain addresses in code segments
and data segments, in any combination.

The second complication is that code and data segments in object files may con-
tain addresses of locations in other program object files or in library object files.
A location L in an object file, whose address can be used in other object files, is
marked with an external symbol, also called an external name; an external sym-
bol looks like an identifier. The location L itself is called an external entry point.
Object files can refer to L by using an external reference to the external symbol of
L. Object files contain information about the external symbols they refer to and the
external symbols for which they provide entry points. This information is stored in
an external symbol table.

For example, if an object file a.o contains a call to the routine printf at location
500, the file contains the explicit information in the external symbol table that it
refers to the external symbol printf at location 500. And if the library object file
printf.o has the body of printf starting at location 100, the file contains the explicit
information in the external symbol table that it features the external entry point printf
at address 100. It is the task of the linker to combine these two pieces of information
and to update the address at location 500 in the copy of the code segment of file a.o
to the address of location 100 in the copy of printf.o, once the position of this copy
with respect to the other copies has been established.

The linking process for three code segments is depicted in Figure 8.1; the seg-
ments derive from the object files a.o, b.o, and printf.o mentioned above. The length
of the code segment of b.o is assumed to be 3000 bytes and that of printf.o 500 bytes.
The code segment for b.o contains three internal addresses, which refer to locations
1600, 250, and 400, relative to the beginning of the segment; this is indicated in
the diagram by having relocation bit maps along the code and data segments, in
which the bits corresponding to locations 1600, 250, and 400 are marked with a C
for “Code”. The code segment for a.o contains one external address, of the external
symbol printf as described above. The code segment for printf.o contains one exter-
nal entry point, the location of printf. The code segments for a.o and printf.o will
probably also contain many internal addresses, but these have been ignored here.

Segments usually contain a high percentage of internal addresses, much higher
than shown in the diagram, and relocation information for internal addresses re-
quires only a few bits. This explains why relocation bit maps are more efficient than

366 8 Assemblers, Disassemblers, Linkers, and Loaders

linked lists for this purpose.
The linking process first concatenates the segments. It then updates the internal

addresses in the copies of a.o, b.o, and printf.o by adding the positions of those
segments to them; it finds the positions of the addresses by scanning the reloca-
tion maps, which also indicate if the address refers to the code segment or the data
segment. Finally it stores the external address of printf, which computes to 4100
(=1000+3000+100), at location 100, as shown.

bit maps

C

C

C

relocation

1000

4000

4500

0

250

400

1600

0

1000

0

3000

0

a.o

b.o

printf.o
100

500

entry point
_printf

reference to
_printf

segments
original code

4100

2600

1250

1400

0

segment
executable code

resulting

Fig. 8.1: Linking three code segments

We see that an object file needs to contain at least four components: the code
segment, the data segment, the relocation bit map, and the external symbol table.

8.1.4 Alignment requirements and endianness

Although almost every processor nowadays uses addresses that represent (8-bit)
bytes, there are often alignment requirements for some or all memory accesses.
For example, a 16-bit (2-byte) aligned address points to data whose address is a

8.2 Assembler design issues 367

multiple of 2. Modern processors require 16, 32, or even 64-bit aligned addresses.
Requirements may differ for different types. For example, a processor might re-
quire 32-bit alignment for 32-bit words and instructions, 16-bit alignment for 16-bit
words, and no particular alignment for bytes. If such restrictions are violated, the
penalty is slower memory access or a processor fault, depending on the processor.
So the compiler or assembler may need to do padding to honor these requirements,
by inserting unused memory segments for data and no-op instructions for code.

Another important issue is the exact order in which data is stored in memory. For
the bits in a byte there is nowadays a nearly universal convention, but there are two
popular choices for storing multi-byte values. First, values can be stored with the
least significant byte first, so that for hexadecimal number 1234 the byte 34 has the
lowest address, and the value 12 has the address after that. This storage convention is
called little-endian. It is also possible to place the most significant byte first, so that
the byte 12 has the lowest address. This storage convention is called big-endian.
There are no important reasons to choose one endianness over the other1, but since
conversion from one form to another takes some time and forgetting to convert can
introduce subtle bugs, most architectures pick one of the two and stick to it.

We are now in a position to discuss issues in the construction of assemblers and
linkers. We will not go into the construction of loaders, since they hardly require any
special techniques and are almost universally supplied with the operating system.

8.2 Assembler design issues

An assembler converts from symbolic machine code to binary machine code, and
from symbolic data to binary data. In principle the conversion is one to one; for
example the 80x86 assembler instruction

addl %edx,%ecx

which does a 32-bit addition of the contents of the %edx register to the %ecx regis-
ter, is converted to the binary data

0000 0001 11 010 001 (binary) = 01 D1 (hexadecimal)

The byte 0000 0001 is the operation code of the operation addl, the next two bits 11
mark the instruction as register-to-register, and the trailing two groups of three bits
010 and 001 are the translations of %edx and %ecx. It is more usual to write the
binary translation in hexadecimal; as shown above, the instruction is 01D1 in this
notation. The binary translations can be looked up in tables built into the assembler.
In some assembly languages, there are some minor complications due to the over-
loading of instruction names, which have to be resolved by considering the types of
the operands. The bytes of the translated instructions are packed closely, with no-op

1 The insignificance of the choice is implied in the naming: it refers to Gulliver’s Travels by
Jonathan Swift, which describes a war between people who break eggs from the small or the big
end to eat them.

368 8 Assemblers, Disassemblers, Linkers, and Loaders

instructions inserted if alignment requirements would leave gaps. A no-op instruc-
tion is a one-byte machine instruction that does nothing (except perhaps waste a
machine cycle).

The conversion of symbolic data to binary data involves converting, for example,
the two-byte integer 666 to hexadecimal 9A02 (again on an 80x86, which is a little-
endian machine), the double-length (8-byte) floating point number 3.1415927 to hex
97D17E5AFB210940, and the two-byte string "PC" to hex 5043. Note that the string
in assembly code is not extended with a null byte; the null-byte terminated string is
a C convention, and language-specific conventions have no place in an assembler.
So the C string "PC" must be translated by the code generator to "PC\0" in symbolic
assembly code; the assembler will then translate this to hex 504300.

The main problem in constructing an assembler lies in the handling of addresses.
Two kinds of addresses are distinguished: internal addresses, referring to locations
in the same segment; and external addresses, referring to locations in segments in
other object files.

8.2.1 Handling internal addresses

References to locations in the same code or data segment take the form of identifiers
in the assembly code; an example is shown in Figure 8.2. The fragment starts with
material for the data segment (.data), which contains a location of 4 bytes (.long)
aligned on a 8-byte boundary, filled with the value 666 and labeled with the identifier
var1. Next comes material for the code segment (.code) which contains, among
other instructions, a 4-byte addition from the location labeled var1 to register %eax,
a jump to label label1, and the definition of the label label1.

.data
. . .
.align 8

var1:
.long 666
. . .

.code
. . .
addl var1,%eax
. . .
jmp label1
. . .

label1:
. . .
. . .

Fig. 8.2: Assembly code fragment with internal symbols

8.2 Assembler design issues 369

The assembler reads the assembly code and assembles the bytes for the data and
the code segments into two different arrays. When the assembler reads the fragment
from Figure 8.2, it first meets the .data directive, which directs it to start assembling
into the data array. It translates the source material for the data segment to binary,
stores the result in the data array, and records the addresses of the locations at which
the labels fall. For example, if the label var1 turns out to label location 400 in the
data segment, the assembler records the value of the label var1 as the pair (data,
400). Note that in the assembler the value of var1 is 400; to obtain the value of
the program variable var1, the identifier var1 must be used in a memory-reading
instruction, for example addl var1,%eax.

Next, the assembler meets the .code directive, after which it switches to assem-
bling into the code array. While translating the code segment, the assembler finds
the instruction addl var1,%eax, for which it assembles the proper binary pattern and
register indication, plus the value of the data segment label var1, 400. It stores the re-
sult in the array in which the code segment is being assembled. In addition, it marks
the location of this instruction as “relocatable to the data segment” in the reloca-
tion bit map. When the assembler encounters the instruction jmp label1, however, it
cannot do something similar, since the value of label1 is not yet known.

There are two solutions to this problem: backpatching and two-scans assem-
bly. When using backpatching, the assembler keeps a backpatch list for each label
whose value is not yet known. The backpatch list for a label L contains the addresses
A1. . .An of the locations in the code and data segments being assembled, into which
the value of L must eventually be stored. When an applied occurrence of the label L
is encountered and the assembler decides that the value of L must be assembled into
a location Ai, the address Ai is inserted in the backpatch list for L and the location
at Ai is zeroed. The resulting arrangement is shown in Figure 8.3, which depicts
the assembly code, the assembled binary code, and one backpatch list, for the label
label1. When finally the defining occurrence of L is found, the address of the posi-
tion it labels is determined and assigned to L as its value. Next the backpatch list is
processed, and for each entry Ak, the value of L is stored in the location addressed
by Ak.

In two-scans assembly, the assembler processes its input file twice. The purpose
of the first scan is to determine the values of all labels. To this end, the assembler
goes through the conversion process described above, but without actually assem-
bling any code: the assembler just keeps track of where everything would go. During
this process it meets the defining occurrences of all labels. For each label L, the as-
sembler can record in its symbol table the value of L, since that value derives from
the position that L is found to label. During the second scan, the values of all labels
are known and the actual translation can take place without problems.

Some additional complications may occur if the assembly language supports fea-
tures like macro processing, multiple segments, labels in expressions, etc., but these
are mostly of an administrative nature.

370 8 Assemblers, Disassemblers, Linkers, and Loaders

Assembly
code

Backpatch list
for label1

Assembled
binary

EA

EA

0

0

EA 0

. . . .

jmp label1

. . . .

. . . .

. . . .

jmp label1

. . . .

label1:

. . . .

jmp label1

. . . .

Fig. 8.3: A backpatch list for labels

8.2.2 Handling external addresses

The external symbol and address information of an object file is summarized in its
external symbol table, an example of which is shown in Figure 8.4. The table spec-
ifies, among other things, that the data segment has an entry point named options
at location 50, the code segment has an entry point named main at location 100,
the code segment refers to an external entry point printf at location 500, etc. Also
there is a reference to an external entry point named file_list at location 4 in the data
segment. Note that the meaning of the numbers in the address column is completely
different for entry points and references. For entry points, the number is the value
of the entry point symbol; for references, the number is the address where the value
of the referred entry point must be stored.

The external symbol table can be constructed easily while the rest of the trans-
lation is being done. The assembler then produces a binary version of it and places
it in the proper position in the object file, together with the code and data segments,
the relocation bit maps, and possibly further header and trailer material.

Additionally the linker can create tables for the debugging of the translated pro-
gram, using information supplied by the compiler. In fact, many compilers can gen-
erate enough information to allow a debugger to find the exact variables and state-
ments that originated from a particular code fragment.

8.3 Linker design issues 371

External symbol Type Address

options entry point 50 data
main entry point 100 code
printf reference 500 code
atoi reference 600 code
printf reference 650 code
exit reference 700 code
msg_list entry point 300 data
Out_Of_Memory entry point 800 code
fprintf reference 900 code
exit reference 950 code
file_list reference 4 data

Fig. 8.4: Example of an external symbol table

8.3 Linker design issues

The basic operation of a linker is simple: it reads each object file and appends each
of the four components to the proper one of four lists. This yields one code segment,
one data segment, one relocation bit map, and one external symbol table, each con-
sisting of the concatenation of the corresponding components of the object files. In
addition the linker retains information about the lengths and positions of the various
components. It is now straightforward to do the relocation of the internal addresses
and the linking of the external addresses; this resolves all addresses. The linker then
writes the code and data segments to a file, the executable code file; optionally it
can append the external symbol table and debugging information. This finishes the
translation process that we started in the first line of Chapter 2!

Real-world linkers are often more complicated than described above, and con-
structing one is not a particularly simple task. There are several reasons for this.
One is that the actual situation around object modules is much hairier than shown
here: many object file formats have features for repeated initialized data, special
arithmetic operations on relocatable addresses, conditional external symbol resolu-
tion, etc. Another is that linkers often have to wade through large libraries to find
the required external entry points, and advanced symbol table techniques are used
to speed up the process. A third is that users tend to think that linking, like garbage
collection, should not take time, so there is pressure on the linker writer to produce
a blindingly fast linker.

One obvious source of inefficiency is the processing of the external symbol table.
For each entry point in it, the entire table must be scanned to find entries with the
same symbol, which can then be processed. This leads to a process that requires a
time O(n2) where n is the number of entries in the combined external symbol table.
Scanning the symbol table for each symbol can be avoided by sorting it first; this
brings all entries concerning the same symbol together, so they can be processed
efficiently.

	Modern Compiler Design
	Preface
	Contents
	Chapter 1 Introduction
	Part I From Program Text
to Abstract Syntax Tree

	Part II Annotating
the Abstract Syntax Tree
	Part III Processing
the Intermediate Code

	Part IV Memory Management

	Part V From Abstract Syntax Tree to Intermediate Code
	Appendix A Machine Instructions
	Appendix B Hints and Solutions to Selected Exercises
	References
	Index

