
17/08/2022, 10:13 AMThe ELF Object File Format: Introduction | Linux Journal

Page 1 of 5https://www.linuxjournal.com/article/1059

(/)

(https://tuxcare.com/live-patching-services/live-patching-education/?
utm_source=linux_journal&utm_medium=banner&utm_campaign=live_patching_edu)

The ELF Object File Format: Introduction

Software (/taxonomy/term/17)

by Eric Youngdale on April 1, 1995

Now that we are on the verge of a public release of ELF file format compilers and utilities, it is a logical
time to explain the differences between a.out and ELF, and discuss how they will be visible to the user.
As long as I am at it, I will also guide you on a tour of the internals of the ELF file format and show you
how it works. I realize that Linux users range from people brand new to Unix to people who have used
Unix systems for years—for this reason I will start with a fairly basic explanation which may be of little
use to the more experienced users, because I would like this article to be useful in some way to as many
people as possible.

People often ask why we are bothering with a new file format. A couple reasons come to mind—first, the
current shared libraries can be somewhat cumbersome to build, especially for large packages such as
the X Window System that span multiple directories. Second, the current a.out shared library scheme
does not support the dlopen() function, which allows you to tell the dynamic loader to load additional
shared libraries. Why ELF? The Unix community seems to be standardizing this file format; various
implementations of SVr4 such as MIPS, Solaris, Unixware currently use ELF; SCO will reportedly switch
to ELF in the near future; and there are rumors of other vendors switching to ELF. One interesting
sidenote—Windows NT uses a file format based upon the COFF file format, the SVr3 file format that the
Unix community is abandoning in favor of ELF.

Let us start at the beginning. Users will generally encounter three types of ELF files—.o files, regular
executables, and shared libraries. While all of these files serve different purposes, their internal structure
files are quite similar. Thus we can begin with a general description, and proceed to a discussion of the
specifics of the three file types. Next month, I will demonstrate the use of the readelf program, which can
be used to display and interpret various portions of ELF files.

One universal concept among all different ELF file types (and also a.out and many other executable file
formats) is the notion of a section. This concept is important enough to spend some time explaining.
Simply put, a section is a collection of information of a similar type. Each section represents a portion of
the file. For example, executable code is always placed in a section known as .text; all data variables
initialized by the user are placed in a section known as .data; and uninitialized data is placed in a section
known as .bss

In principle, one could devise an executable file format where everything is jumbled together—MS-DOS
binaries come to mind. But dividing executables into sections has important advantages. For example,
once you have loaded the executable portions of an executable into memory, these memory locations
need not change. (In principle, program executable code could modify itself, but this is considered to be
extremely poor programming practice.) On modern machine architectures, the memory manager can
mark portions of memory read-only, such that any attempt to modify a read-only memory location results
in the program dying and dumping core. Thus, instead of merely saying that we do not expect a
particular memory location to change, we can specify that any attempt to modify a read-only memory
location is a fatal error indicating a bug in the application. That being said, typically you cannot
individually set the read-only status for each byte of memory—instead you can individually set the

(/content/open-source-
software-developers-are-all-us)

(https://www.linode.com/lp/brand-
free-credit/?
utm_source=linux_journal&utm_medium=display&utm_campaign=display-
linux_journal-
side_rail&utm_content=&utm_term=)

You May Like

For Open-Source Software,
the Developers Are All of
Us (/content/open-source-
software-developers-are-
all-us)

https://tuxcare.com/live-patching-services/live-patching-education/?utm_source=linux_journal&utm_medium=banner&utm_campaign=live_patching_edu
https://www.linuxjournal.com/
https://www.linuxjournal.com/taxonomy/term/17
https://www.linuxjournal.com/content/open-source-software-developers-are-all-us
https://www.linode.com/lp/brand-free-credit/?utm_source=linux_journal&utm_medium=display&utm_campaign=display-linux_journal-side_rail&utm_content=&utm_term=
https://www.linuxjournal.com/content/open-source-software-developers-are-all-us

17/08/2022, 10:13 AMThe ELF Object File Format: Introduction | Linux Journal

Page 2 of 5https://www.linuxjournal.com/article/1059

protections of regions of memory known as pages. On the i386 architecture the page size is 4096 bytes
—thus you could indicate that addresses 0-4095 are read-only, and bytes 4096 and up are writable, for
example.

Given that we want all executable portions of an executable in read-only memory and all modifiable
locations of memory (such as variables) in writable memory, it turns out to be most efficient to group all of
the executable portions of an executable into one section of memory (the .text section), and all
modifiable data areas together into another area of memory (henceforth known as the .data section).

A further distinction is made between data variables the user has initialized and data variables the user
has not initialized. If the user has not specified the initial value of a variable, there is no sense wasting
space in the executable file to store the value. Thus, initialized variables are grouped into the .data
section, and uninitialized variables are grouped into the .bss section, which is special because it doesn't
take up space in the file—it only tells how much space is needed for uninitialized variables.

When you ask the kernel to load and run an executable, it starts by looking at the image header for clues
about how to load the image. It locates the .text section within the executable, loads it into the
appropriate portions of memory, and marks these pages as read-only. It then locates the .data section in
the executable and loads it into the user's address space, this time in read-write memory. Finally, it finds
the location and size of the .bss section from the image header, and adds the appropriate pages of
memory to the user's address space. Even though the user has not specified the initial values of
variables placed in .bss, by convention the kernel will initialize all of this memory to zero.

Typically each a.out or ELF file also includes a symbol table. This contains a list of all of the symbols
(program entry points, addresses of variables, etc.) that are defined or referenced within the file, the
address associated with the symbol, and some kind of tag indicating the type of the symbol. In an a.out
file, this is more or less the extent of the information present; as we shall see later, ELF files have
considerably more information. In some cases, the symbol tables can be removed with the strip utility.
The advantage is that the executable is smaller once stripped, but you lose the ability to debug the
stripped binary. With a.out it is always possible to remove the symbol table from a file, but with ELF you
typically need some symbolic information in the file for the program to load and run. Thus, in the case of
ELF, the strip program will remove a portion of the symbol table, but it will never remove all of the symbol
table.

Finally, we need to discuss the concept of relocations. Let us say you compile a simple “hello world”
program:

 main()
 {
 printf("Hello World\n");
 }

The compiler generates an object file which contains a reference to the function printf . Since we have
not defined this symbol, it is an external reference. The executable code for this function will contain an
instruction to call printf, but in the object code we do not yet know the actual location to call to perform
this function. The assembler notices that the function printf is external, and it generates a relocation,
which contains several components. First, it contains an index into the symbol table—this way, we know
which symbol is being referenced. Second, it contains an offset into the .text section, which refers to the
address of the operand of the call instructions. Finally, it contains a tag which indicates what type of
relocation is actually present. When you link this file, the linker walks through the relocations, looks up the
final address of the external function printf, then patches this address back into the operand of the call
instruction so the call instruction now points to the actual function print.

a.out executables have no relocations. The kernel loader cannot resolve any symbols and will reject any
attempt to run such a binary. An a.out object file will of course have relocations, but the linker must be
able to fully resolve these to generate a usable executable.

So far everything I have described applies to both a.out and ELF. Now I will enumerate the shortcomings
of a.out so that it is more clear why we would want to switch to ELF.

(/content/lotfi-ben-othmane-
martin-gilje-jaatun-and-edgar-
weippls-empirical-research-
software-security)

(/content/heirloom-software-
past-adventure)

(/content/softmaker-freeoffice)

Derek Zimmer (/users/derek-

zimmer-0)

Lotfi ben Othmane, Martin
Gilje Jaatun and Edgar
Weippl's Empirical
Research for Software
Security (CRC Press)
(/content/lotfi-ben-
othmane-martin-gilje-
jaatun-and-edgar-weippls-
empirical-research-
software-security)

James Gray (/users/james-

gray)

Heirloom Software: the
Past as Adventure
(/content/heirloom-
software-past-adventure)

Eric S. Raymond (/users/eric-

s-raymond)

SoftMaker FreeOffice
(/content/softmaker-
freeoffice)

James Gray (/users/james-

gray)

https://www.linuxjournal.com/content/lotfi-ben-othmane-martin-gilje-jaatun-and-edgar-weippls-empirical-research-software-security
https://www.linuxjournal.com/content/heirloom-software-past-adventure
https://www.linuxjournal.com/content/softmaker-freeoffice
https://www.linuxjournal.com/users/derek-zimmer-0
https://www.linuxjournal.com/content/lotfi-ben-othmane-martin-gilje-jaatun-and-edgar-weippls-empirical-research-software-security
https://www.linuxjournal.com/users/james-gray
https://www.linuxjournal.com/content/heirloom-software-past-adventure
https://www.linuxjournal.com/users/eric-s-raymond
https://www.linuxjournal.com/content/softmaker-freeoffice
https://www.linuxjournal.com/users/james-gray

17/08/2022, 10:13 AMThe ELF Object File Format: Introduction | Linux Journal

Page 3 of 5https://www.linuxjournal.com/article/1059

First, the header of an a.out file (struct exec, defined in /usr/include/linux/a.out.h) contains limited
information. It only allows the above-described sections to exist and does not directly support any
additional sections. Second, it contains only the sizes of the various sections, but does not directly
specify the offsets within the file where the section starts. Thus the linker and the kernel loader have
some unwritten understanding about where the various sections start within a file. Finally, there is no
built-in shared library support—a.out was developed before shared library technology was developed, so
implementations of shared libraries based on a.out must abuse and misuse some of the existing sections
in order to accomplish the tasks required.

About 6 months ago, the default file format switched from ZMAGIC to QMAGIC files. Both of these are
a.out formats, and the only real difference is the different set of unwritten understandings between the
linker and kernel. Both formats of executable have a 32 byte header at the start of the file, but with
ZMAGIC the .text section starts at byte offset 1024, while with QMAGIC the .text section starts at the
beginning of the file and includes the header. Thus ZMAGIC wastes disk space, but, more importantly,
the 1024 byte offset used with ZMAGIC makes efficient buffer cache management within the kernel more
difficult. With a QMAGIC binary, the mapping from the file offset to the block representing a given page of
memory is more natural, and should allow for some performance enhancements in the kernel. ELF
binaries are also formatted in a natural way that is compatible with possible future changes to the buffer
cache.

I have said that shared library support in a.out is lacking—while this is true, it is not impossible to design
shared library implementations that work with a.out. The current Linux shared libraries are certainly one
example; another example is SunOS-style shared libraries which are currently used by BSD-du-jour.
SunOS-style shared libraries contain a lot of the same concepts as ELF shared libraries, but ELF allows
us to discard some of the really silly hacks that were required to piggyback a shared library
implementation onto a.out.

Before we go into our hands-on description of how ELF works, it would be worthwhile to spend a little
time discussing some general concepts related to shared libraries. Then when we start to pick apart an
ELF file, it will be easier to see what is going on.

First, I should explain a little bit about what a shared library is; a surprising number of people look at
shared libraries as sort of black boxes without a good understanding of what goes on inside. Most users
are at least aware of the fact that if they mess up their shared libraries, the system can become nearly
unusable. This leads most people to treat them with a certain reverence.

If we step back a little bit, we recall that non-shared libraries (also known as static libraries) contain useful
procedures that programs might wish to make use of. Thus the programmer does not need to do
everything from scratch, but can use a set of standard well-defined functions. This allows the
programmer to be more productive. Unfortunately, when you link against a static library, the linker must
extract all library functions you require and make them part of your executable, which can make it rather
large.

The idea behind a shared library is that you would somehow take the contents of the static library (not
literally the contents, but usually something generated from the same source tree), and pre-link it into
some kind of special executable. When you link your program against the shared library, the linker merely
makes note of the fact that you are calling a function in a shared library, so it does not extract any
executable code from the shared library. Instead, the linker adds instructions to the executable which tell
the startup code in your executable that some shared libraries are also required, so when you run your
program, the kernel starts by inserting the executable into your address space, but once your program
starts up, all of these shared libraries are also added to your address space. Obviously some mechanism
must be present for making sure that when your program calls a function in the shared library, it actually
branches to the correct location within the shared library. I will be discussing the mechanics of this for
ELF in a little bit.

More info about ELF (/files/linuxjournal.com/linuxjournal/articles/010/1059/1059s1.html)

Now that we have explained shared libraries, we can start to discuss some of the general concepts
related to how shared libraries are implemented under ELF. To begin with, ELF shared libraries are
position independent. This means that you can load them more or less anywhere in memory, and they will
work. The current a.out shared libraries are known as fixed address libraries: each library has one
specific address where it must be loaded to work, and it would be foolish to try to load it anywhere else.

(https://www.linode.com/lp/brand-
free-credit/?
utm_source=linux_journal&utm_medium=display&utm_campaign=display-
linux_journal-
side_rail&utm_content=&utm_term=)

https://www.linuxjournal.com/files/linuxjournal.com/linuxjournal/articles/010/1059/1059s1.html
https://www.linode.com/lp/brand-free-credit/?utm_source=linux_journal&utm_medium=display&utm_campaign=display-linux_journal-side_rail&utm_content=&utm_term=

17/08/2022, 10:13 AMThe ELF Object File Format: Introduction | Linux Journal

Page 4 of 5https://www.linuxjournal.com/article/1059

ELF shared libraries achieve their position independence in a couple of ways. The main difference is that
you should compile everything you want to insert into the shared library with the compiler switch -fPIC.
This tells the compiler to generate code that is designed to be position independent, and it avoids
referencing data by absolute address as much as possible.

Position independence does not come without a cost, however. When you compile something to be PIC,
the compiler reserves one machine register (%ebx on the i386) to point to the start of a special table
known as the global offset table (or GOT for short). That this register is reserved means that the compiler
will have less flexibility in optimizing code, and this means that it will take longer to do the same job.
Fortunately, our benchmark indicates that for most normal programs the drop in performance is less than
3% for a worst case, and in many cases much less than this.

Another ELF feature is that its shared libraries resolve symbols and externals at run time. This is done
using a symbol table and a list of relocations which must be performed before the image can start to
execute. While this sounds like it could be slow, a number of optimizations built into ELF make it fairly
fast. I should mention that when you compile PIC code into a shared library, there are generally very few
relocations, one more reason why the performance impact is not of great concern. Technically, it is
possible to generate a shared library from code that was not compiled with -fPIC, but an incredible
number of relocations would need to be performed before the shared library was usable, another reason
why -fPIC is important.

When you reference global data within a shared library, the assembly code cannot simply load the value
from memory the way you would do with non-PIC code. If you tried this, the code would not be position
independent and a relocation would be associated with the instruction where you were attempting to
load the value from the variable. Instead, the compiler/assembler/linker create the GOT, which is nothing
more than a table of pointers, one pointer for each global variable defined or referenced in the shared
library. Each time the library needs to reference a given variable, it first loads the address of the variable
from the GOT (remember that the address of the GOT is always stored in %ebx so we only need an
offset into the GOT). Once we have this, we can dereference it to obtain the actual value. The advantage
of doing it this way is that to establish the address of a global variable, we need to store the address in
only one place, and hence we need only one relocation per global variable.

We must do something similar for functions. It is critical that we allow the user to redefine functions which
might be in the shared library, and if the user does, we want to force the shared library to always use the
version the user defined and never use the version of the function in the shared library. Since the function
could conceivably be used lots of times within a shared library, we use something known as the
procedure linkage table (or PLT) to reference all functions. In a sense this is nothing more than a fancy
name for a jumptable, an array of jump instructions, one for each function that you might need to go to.
Thus if a particular function is called from thousands of locations within the shared library, control will
always pass through one jump instruction. This way, you need only one relocation to determine which
version of a given function is actually called, and from the standpoint of performance this is about as
good as you are going to get.

Next month, we will use this information to dissect real ELF files, explaining specifics about the ELF file
format.
Eric Youngdale Eric Youngdale has worked with Linux for over two years, and has been active in kernel
development. He also developed the current Linux shared libraries.

No comments yet. Be the first! (https://www.linuxjournal.com/article/1059#disqus_thread)

Connect With Us MASTHEAD
(/CONTENT/MASTHEAD)

AUTHORS

RSS FEEDS
(/RSS_FEEDS)

ABOUT US

https://www.linuxjournal.com/content/masthead
https://www.linuxjournal.com/author
https://www.linuxjournal.com/rss_feeds
https://www.linuxjournal.com/aboutus

17/08/2022, 10:13 AMThe ELF Object File Format: Introduction | Linux Journal

Page 5 of 5https://www.linuxjournal.com/article/1059

! (https://youtube.com/linuxjournalonline) "
(https://www.facebook.com/linuxjournal/) #
(https://twitter.com/linuxjournal)
Linux Journal, representing 25+ years of publication, is the original magazine of the global
Open Source community.
© 2022 Slashdot Media, LLC. All rights reserved.

PRIVACY POLICY (https://slashdotmedia.com/privacy-statement/)
TERMS OF SERVICE (https://slashdotmedia.com/terms-of-use/)
ADVERTISE (/sponsors) OPT OUT (http://slashdotmedia.com/opt-out-choices)

(/AUTHOR)

CONTACT US
(/FORM/CONTACT)

(/ABOUTUS)

https://youtube.com/linuxjournalonline
https://www.facebook.com/linuxjournal/
https://twitter.com/linuxjournal
https://slashdotmedia.com/privacy-statement/
https://slashdotmedia.com/terms-of-use/
https://www.linuxjournal.com/sponsors
http://slashdotmedia.com/opt-out-choices
https://www.linuxjournal.com/author
https://www.linuxjournal.com/form/contact
https://www.linuxjournal.com/aboutus

