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Abstract

Many operating system designs can be placed into one of two very rough categories,
depending upon how they implement and use the notions of process and
synchronization. One category, the "Message-oriented System," is characterized by a
relatively small, static number of processes with an explicit message system for
communicating among them. The other category, the "Procedure-oriented System," is
characterized by a large, rapidly changing number of small processes and a process
synchronization mechanism based on shared data.

In this paper, it is demonstrated that these two categories are duals of each other and
that a system which is constructed according to one model has a direct counterpart in
the other. The principal conclusion is that neither model is inherently preferable, and the
main consideration for choosing between them is the nature of the machine architecture
upon which the system is being built, not the application which the system will ultimately
support.

This is an empirical paper, in the sense of empirical studies in the natural sciences. We have observed a
number of samples from a class of objects and identified a classification of some of their properties.
We have then generalized our classification and constructed abstract models to describe these
properties. With the aid of these models, we were able to make some observations about the nature of
the objects themselves, observations which are supported by other experimental evidence. Finally, we
have drawn some conclusions about the class of objects which better aid our understanding of that
class and the decisions which affect the design of members of that class.

The universe in this investigation is the class of operating systems, and the properties in which we are
interested are the ways in which the concepts of process, synchronization, and interprocess
communication occur within these systems and among their clients. There appear to be two general
categories in this respect, which we designate the Message-oriented Systems and the Procedure-
oriented Systems.  Most systems which we have observed tend to be biased fairly strongly in favour of
one or the other, rather than being neutral or indeterminate. Moreover,
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within each of the categories, the systems tend to be more like each other than like systems of the
other category.  Finally, in several design efforts in which either of us have participated or observed
first-hand, attempts to combine fundamental characteristics from the two categories have met with
failure or have been abandoned.

To characterise our classifications, we have constructed a canonical model for each category. The
message-oriented model is characterised by a small, relatively static number of big processes, an
explicit set of message channels between them, a relatively limited amount of direct sharing of data in
memory, and an identification -of address space or context with processes. The procedure-oriented
model is characterized by a large number of very small processes, rapid creation and deletion of
processes, communication by means of direct sharing and interlocking of data in memory, and
identification of the context of execution with the function being executed rather than with the
process. These two models define two differents kinds of primitive operations for managing processes
and synchronization in an operating system. From them, we will derive three observations:

1. The two models are duals of each other. That is, a program or subsystem constructed
strictly according to the primitives defined by one model can be mapped directly into
a dual program or subsystem which fits the other model.

2. The dual programs or subsystems are logically identical to each other. They can also be
made textually very similar, differing only in non-essential details.

3. The performance of a program or subsystem from one model, as reflected by its queue
lengths, waiting times, service rates, etc. is identical to that of its dual system, given
identical scheduling strategies.   Furthermore, the primitive operations provided by
the operating system of one model can be made as efficient as their duals of the other
model.

The principal conclusion we will draw from these observations is that the considerations for choosing
which model to adopt in a given system are not found in the applications which that system is meant
to support Instead, they lie in the substrate upon which the system is built and are a function of which
set of primitive operations and mechanisms are easier to build or better suited to the constraints
imposed by the machine architecture and hardware.

In the remainder of the paper, we develop the canonical models in greater detail. We then present the
three observations, our reasons for believing them, and some empirical support for them. Finally, we
discuss the consequences and conclusions which we derived from this point of view.

Two Models

It is not helpful in this paper to develop an elaborate formalism defining the two canonical models for
our categories of operating systems.  Instead, we will describe these in informal English, outlining the
characteristics of each in familiar terms. Similarly, our observations will be based on
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informal arguments about the models, not on formal, rigourous proofs.

An important caveat to bear in mind is that these models bear roughly the same relationship to reality as, for
example, the postulate of frictionless surfaces does to reality in physics. That is, no real system precisely agrees
with either model in all respects. Furthermore, most operating systems typically have some subsystems which
behave like one and other subsystems which behave like the other. Thus the observations which we will make
apply only to our models, and our conclusions will describe a real system only to the same degree that that
system corresponds to one or the other of the models.

However, we believe and have observed that the models are reasonable in the sense that most modem operating
systems can be usefully classified using them. Some systems are implemented in a style which is very close in
spirit to one model or the other. Other systems are able to be partitioned into subsystems, each of which
corresponds to one of the models, and which are coupled by explicit interface mechanisms. Most of the
remaining systems are so ill-structured and unstable (for example, the ratio of bits, operations, and/or interfaces
to information content is much too high) that they are unreliable, unmanageable, uneconomic, and unusable.

Message-oriented System

At the level of mechanism, this kind of system is characterized by facilities for passing messages (or events, or
whatever they might be called in a particular system) easily and efficiently among processes. There also
convenient facilities for queuing messages at destination processes until they can be acted upon. Processes are
provided with primitive operations to send messages, wait for any message, wait for a particular class of
message, and examine the state of the message queue. Pre-emption of the processor occurs when a message
arrives at a 'higher priority' process which is waiting for a message of that kind.

Some of the hallmarks of successful systems designed according^to this model are the following;
Specific communication paths (i.e., message channels, ports, sockets, or other means of identifying
classes of messages) are established for specific forms of communication between particular pairs of
processes. This binding typically persists for relatively long periods, and is often done when the system is
initialized.
The number of processes and the connections between them remain relatively static. Deletion of
processes tends to be very difficult because of the possibility of an arbitrary number of queued messages
awaiting response.   Creating processes and changing connections can be correspondingly difficult.
Each process tends to operate in a relatively static context. Virtual memories or address spaces are
usually placed in one-to-one correspondence with processes-   Processes rarely cross protection
boundaries (except to briefly enter the executive or kernel), and they rarely share data in memory.
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As a result, processes lend to be associated -with system resources, and the needs of
applications which the system exists to serve are encoded into data to be passed around in
messages.

This style of system architecture is most common in the world of real-time systems and process
control, where frequently the applications themselves are encoded in message blocks denoting
transactions. However, there are also a number of general purpose operating systems implemented in
this way, including, for example, IBM's OS/360[1]. The most elegant example of a message-oriented
system is the GEC 4080[2]. <
In this style of system, a number of characteristics tend to emerge as natural consequences of good
design practice:

Synchronization among processes and queuing for congested resources is implemented in the
message queues attached to the processes associated with those resources.
Data structures which must be manipulated by more than one process are passed (by reference)
in messages. No process touches the data unless it is currently processing a message referring
to it, and a process does not continue to manipulate the data after it has passed it on in a
message to another process.
Peripheral devices are treated as processes (or virtual processes). Control of a device often
resembles sending a message to that device, and an 'interrupt' from the device is manifest as a
message to some other process.
Priorities tend to be statically assigned to processes at the time the system is designed, and they
correspond to the timing needs of the resources being managed.
Processes operate upon one or a very small number of messages at a time and normally
complete those operations before looking at the message queues again.
Because processes operate in static contexts, neither procedural interfaces no global naming
schemes are very useful.

Our canonical model is, therefore, and idealized operating system kernel and/or programming
environment which provides the following facilities:

Messages and message identifiers.  A message is a data structure meant for sending information
from one process to another; it typically contains a small, fixed area for data which is passed by
value and space for a pointer to larger data structures which must be passed by reference. A
message identifier is a handle by which a particular message can be identified.
Message channels and message ports. A message channel is an abstract structure which
identifies the destination of a message. A message port is queue capable of holding messages of
a certain class or type which might be received by a particular process. Each message channel
must be bound to a particular message port before is can be used. A message port, however,
may have more than one message channel bound to it.
Four message transmission operations:

SendMessage[messageChannel, messageBody] returns [messageId] " This operation
simply queues a new message on the port bound to the the messageChannel
named as parameter. The messageld returned is used as parameter to the
following operation.
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AwaitReply(messageId] returns [messageBody] - The operation causes the process to
wait for a reply to a specific message previously sent via SendMessage.

WaitForMessage[set  of  messagePort]   returns  [messageBody,  messageld,
messagePort] - This operation allows a process to wait for a new (unsolicited)
message on any one of the message ports named in the 'parameter. The message which
is first on the queue is returned, along with a message identifier for future reference
and an indication of the port from which that message came.
SendReply[messageId, messageBody] - This operation sends a reply to the particular

message identified by the message identifier.
Process declarations. A process (or more precisely, a process template) consists of local data
and algorithms, defines certain message ports, and refers to (i.e., sends messages to) certain
message channels representing other processes.
The operation CreateProcess. This operation creates (an instance of) a process which has been
previously declared, and binds the message channels it references to message ports of
previously existing processes. Note that because of the binding, this operation is rather
cumbersome and should not be used extravigantly.  (No DeleteProcess operation is provided in
our model, because it would be messy and not important)

Finally, our canonical model for the message-oriented system suggests a standard way, characterised
by the program outline below, for implementing a simple resource manager using these primitive
system operations. It consists of a single process containing local data to represent the state information
necessary for managing that resource and a loop which waits for a request from any of a set of ports,
then services that request.

begin m: messageBody;
i: messageld;
p: portid;
s: set of portid;

... -local data and state information for this process
initialize;
do forever;

[m, i, p]«- WaitForMessage[s];
case p of

poitl =>...; -algorithm for poitl port2 =>...
if resourceExhausted then s

*- s - port2;
SendReply[i, reply];
...; -algorithm for port2

portk =>...
s *- s + port2 ...; -algorithm for portk
endcase;

endloop;
end.

In this process, the kind of service requested is a function of which port the requesting message arrives
on. It may or may not involve making requests of still other processes and/or sending a
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reply back to the requestor. It may also result in some circumstance, such as the exhaustion of a
resource, which prevents further requests from being considered. These remain queued on their port
until later, when the process is willing to listen on that port again.

Note that if a whole system is built according to this style, then the sole means of interaction among
the components of that system is by means of the message facility. Each process can operate in its own
address space without interference from the others. Because of the serial way in which requests are
handled, there is never any need to protect the state information of a process from multiple,
simultaneous access and updating.

Procedure-oriented System

At the level of mechanism, this kind of system is characterized by a protection and addressing
mechanism oriented toward procedures and efficient procedure call facilities which can take a process
very rapidly from one context to another. Cooperation among processes is achieved by some form of
locks, semaphores, monitors, or other synchronizing data structures (we will use the term lock as a
generic identification of these). In this kind of system, a process attempts to claim a lock, and may be
forced to wait on a queue until some other process releases it. Pre-emption of the processor occurs
when a release operation is performed on a lock which a 'higher priority' process is attempting to
claim.

Some of the hallmarks of successful system design in this environment are the following:
Global data can be both protected and efficiently accessed by providing procedural interfaces
which do all of the synchronization and manipulation in controlled ways.
Process creation is very easy since no communication channels have to be set up with existing
processes; deletion of a process is correspondingly easy so long as it is not holding any locks.
A process typically has only one goal or task, but it wanders all over the system (by means of
calling procedures to enter different contexts) in order to get that thing done.
As a result, the system resources tend to be encoded in common or global data structures and
the applications are associated with processes whose needs are encoded in calls to system-
provided procedures which access this data.

This style is characteristics of a wide variety of designs, including HYDRA[3], the Plessey System
250[4], and others.

Some of the characteristics of systems which result from this viewpoint are the following:
Synchronization of processes and queuing for congested resources occurs in the form of
queues of processes waiting for locks associated with the corresponding data structures.
Data is shared directly among processes, and processes tend to lock only small parts of the data
structures for relatively short periods of time.
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Control of and 'interrupts' from peripheral devices take the form of manipulating locks and/or
shared data in memory.

Processes inherit their priorities dynamically from the contexts in which they execute;
priorities are associated with the locks or data structures and correspond to the timing
requirements of the resources they represent.
Global naming schemes are an important feature in optimizing the context switching, and the
contexts represent an import form of protection.

Our canonical model for a procedure-oriented system is an operating system kernel and/or a
programming environment which provides the following facilities, which we describe as hypothetical
extensions to Mesa, a Pascal-like language developed at Xerox[5j:

Procedures.   A procedure is a piece of Mesa text containing algorithms, local data, parameters,
and results. It always operates in the scope of a Mesa module and may access any global data
declared in that module (as well as in any containing procedures).
Procedure call facilities, synchronous and asynchronous. The synchronous procedure call
mechanism is just the ordinary Mesa procedure call statement, which may return results. This is
very much like procedure or function calls in Algol, Pascal, etc. The asynchronous procedure
call mechanism is represented by the FORK and JOIN statements, which are defmed as follows:

processld <- FORK procedureName[parameterList] - This statement starts the
procedure executing as a new process with its own parameters. The procedure
operates in the context of its declaration, just as if it had been called
synchronously, but the process has its own call stack and state. The calling
process continues executing from the statement following the FORK. The
process identifier returned from FORK is used in the next statement

[resultList] <- JOIN processld - This statement causes the process executing it to
synchronize itself with the termination of the process named by the process
identifier.   The results are retrieved from that process and returned to the
calling process as if they had been returned from an ordinary procedure call.
The JOlNed process is then destroyed and execution continues in the JOlNing
process from the statement following the JOIN.

Modules and monitors. A module is the primitive Mesa unit of compilation and consists of a
collection of procedures and data. The scope rules of the language determine which of these.
procedures and data are accessible or callable from outside the module.  A monitor is a special
kind of Mesa module which has associated with it a lock to prevent more than one process from
executing inside of it at any one time. It is based on and very similar to the monitor mechanism
described by Hoare[6].
Module instantiation. Modules (including monitor modules) may be instantiated in Mesa by
means of the NEW and START statements. These cause a new context to be created for holding
the module data, provide the binding from external procedure references within the module to
procedures declared in other modules, and activate the initialization code of the module.
Condition variables.   Condition variables are part of Hoare's monitor mechanism an provide
more flexible synchronization among events than mutual exclusion facility of the monitor lock
or the process termination facility of the JOIN statement. In our model, a condition variable, must
be contained within a monitor, has associated with it a queue of processes, and has two
operations defined on it:
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WAIT conditionVariable - This causes the process executing it to release the monitor
lock, suspend execution, and join the queue associated with that condition
variable.

SIGNAL condition Variable -- This causes a process which has previously WAITed
on the condition variable to resume execution from its next statement when it
is able to reclaim the monitor lock.

Note that because the FORK and JOIN operations apply to procedures which are already declared and
bound to the right context, these operations take the same order of magnitude of time to execute as do
simple procedure calls and returns. Thus processes are very lightweight, and can be created and
destroyed very frequently. Module and monitor instantiation, on the other hand, is more cumbersome
and is usually done statically before the system is started. Note that this canonical model has no
module deletion facility.

As we did for the previous model, we can define a standard style of simple resource manager for the
procedure-oriented system. This is characterised by the program outline below. It consists of a monitor
containing global data representing the state information for the resource, plus a number of procedure
declarations representing the different services offered.

ResourceManager: MONITOR =
C: CONDITION;
resourceExhausted: BOOLEAN;
... "global data and state information for this process
prod : ENTRY PROCEDURE[ . . . ] =

...; "algorithm for prod
proc2: ENTRY PROCEDURE[ . . . ] RETURNS[ . . . ] = BEGIN

IF resou rceExhausted THEN WAIT c;

RETURN[results];
• • • I

END; "algorithm for proc2

prOCL: ENTRY PROCEDURE[ . . . ] = BEGIN

resourceExhausted«- FALSE;
SIGNAL C;
• • • >

END; "algorithm for procL endloop;

initialize;
END.

The attribute ENTRY is used to distinguish procedures which are called from outside the monitor, thus
seizing the monitor lock, from those which are declared purely internal to the monitor. Any

10
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of the procedures in this module may, of course, call procedures declared in other modules for other
system services before returning. Within the monitor, condition variables are used to control waiting for
circumstances such as the availability of resources. These are used in this standard resource manager ,tp
control the access of a process the procedure representing a particular kind of service.

If a whole system is built in this style, then the sole means of interaction among its components is
procedural. Processes move from one context to another by means of the procedure call facility across
module boundaries, and they use asynchronous calls to stimulate concurrent activity. They depend upon
monitor locks and condition variables to keep out of the way of each other. Thus no process can be
associated with a single address space unless that space be the whole system.

Characteristics of the Models

The importance of these rather idealized models is that we can show that the two styles of system
design are duals of each other. We will show how a program for one kind of system can be mapped into
a program appropriate for the other. We will also show that as a result of this mapping, the logic of the
programs in the dual systems is invariant Finally, we will argue that the performance of the system can
be preserved across the mapping. It should be noted that our transformation is not the naive technique
of simulating one set of primitives in terms of the other. Instead, it is a direct transformation on the
programs themselves, exchanging the primitive operations and data structures of one style for those of
the other.

The Duality Mapping

The mapping is derived from the following correspondence between the basic system facilities and
canonical styles for resource managers:

11
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Message-oriented system Procedure-oriented system
Processes, CreateProcess
Message Channels Message
Ports

SendMessage; AwaitReply
(immediate)
SendMessage;... AwaitReply
(delayed)          -,
SendReply
main loop of standard resource manager,
WaitForMessage statement, case
statement
arms of the case statement selective
waiting for messages

Monitors, NEW/START External
Procedure identifiers ENTRY

procedure identifiers simple
procedure call

FORK; . . .JOIN

RETURN (from procedure) monitor
lock, ENTRY attribute

ENTRY procedure declarations
condition variables, WAIT, SIGNAL

That is, the facilities on the left serve the same purpose in the message-oriented system as do the ones opposite
them in the procedure-oriented system. For example, a SendMessage operation followed by an AwaitReply
operation some time later is used by message system clients where a procedure system client would use FORK

and JOIN.

The most interesting correspondence is between the processes of the one system and the monitors of the other. In
particular, in the canonical style of resource manager, the arms of the case statement in the message-oriented
model correspond to the ENTRY procedure declarations in the other. The code representing the main loop of the
process, with its WaitForMessage, and case statement performs exactly the same function as the mutual
exclusion lock on the monitor, namely that of serializing the requests for service and admitting only one at a
time. The case statement itself sorts out which service is requested in the same way as the different procedure
names do in the monitor.

Similarity of Programs

This forms the basis of the duality mapping. If a client system or subsystem is written in the strict style of one of
our standard resource managers, then it can be transformed directly into the other kind of system by replacing
each construct with its corresponding one. For example, each monitor is replaced with a process declaration
containing a main loop in the style we suggested. All synchronous and asynchronous procedure calls are
replaced by SendMessage and AwaitReply operations, and returns from procedures are replaced by SendReply
operations.  The use of condition variables for managing the synchronization of events is replaced by carefully
selected waiting for messages.   This transformation can, of course, be applied in either direction.

12
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Note thai by applying the transformation, we do not affect the logic of the client programs at all. In fact, none of
their interesting parts are touched or even rearranged (except for the initialization code of each resource manager,
which by tradition appears after the procedure declarations in the monitor but before the main loop in the process).
No algorithms are changed; no data structures are replaced; no interface strategies are affected. Only the actual
text representing the interactions between client system components is modified, and this is only to reflect the
'syntactic' details of the primitive facilities of the other kind of system.   The semantic content is invariant.

This simplistic mapping between the two types of systems does not work if the systems being transformed do not
adhere to the strict style we postulated. If a real system implements process or synchronization facilities which are
very different from those of our canonical model, then the transformation must be extended and/or may not make
sense. Similarly, if resource managers or users of resources are designed in a grossly different way, even though
they use the same primitive operations, the transformation may produce a very contrived or awkward program
structure. This raises an interesting question, to which we have no definite answer;

If a primitive operation, process facility, or programming style is proposed for a system
which fits into one of our two broad categories, and if no reasonable counterpart for it can be found in the
other category, is it a good thing? That is, would a style or mechanism which has no dual be considered a
truly well-structured construct which is elegant in form and rich in semantic content? Or would it be
considered an overimaginative, ungainly feature which is awkward to program and hard to understand?

For example, the WAIT statement in the procedure-oriented model provides a considerably richer synchronization
facility than does selective waiting for messages in the message-oriented model. In particular, a process may WAIT

anywhere within the ENTRY procedure or any other monitor procedure called by it, not just at the beginning as we
have suggested in the canonical style. However, this is not without its disadvantages. The procedure which WAITS

must ensure that the monitor invariant is true, even though it might be deep inside an inner block of an inner
procedure and may have captured all sorts of monitor information and temporary results in its local variables,
results which could easily be invalidated by another process entering the monitor. In this sense, the WAIT statement
is almost as ill-structured as the notorious 'go to' statement. Perhaps, it should be confined to, say, the entry and
exit points of an ENTRY procedure for more clarity.

One final observation with respect to the invariance of programs under the duality mapping: It is possible to
imagine embedding the primitive synchronization and process facilities of the message-oriented system in a
strongly-typed language such as Mesa. Furthermore, if we accept that the main loop of the canonical resource
manager, the WaitForMessage operation, and the case statement are fundamental parts of the programming style,
then they can be absorbed into the linguistic unit representing a process (so that a process declaration consists of
some global data, and a set of actions to associate with each message port). Finally, we can make the sending of

13
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messages look syntactically like calling or FORKing procedures, with the full typechecking facilities of
the language applied to message bodies just as we apply it now to parameter and result lists. Then if we
consider a system built according to the canonical style in this environment, we see that its dual is
lexlually identical except for the spelling of certain keywords of the language.

Preservation of Performance

Our canonical models and standard* styles for implementing resource managers suggest that there is
another property which is invariant under the duality mapping, namely the performance of the client
system. If we take due care in the implementation of the primitive operations of the two operating
system kernels (and if we assume similar processor characteristics and peripheral devices), then a
system of programs built in terms of one will have the same execution characteristics as its dual system
built in terms of the other. To understand this, observe that there are three components of the dynamic
behaviour of a system of programs:

the execution times of the programs themselves,
the computational overhead of the of the primitive system operations they call, and

the queuing and waiting times which reflect the congestion and sharing of resources,
dependence upon external events, and scheduling decisions.

The duality transformation leaves the main bodies of the programs comprising the system untouched.
Thus the algorithms will all compute at the same speed, and the same amount of information will be
stored in each data structure. The same amount of client code will be executed in each of the dual
systems. The same number of additions, multiplications, comparisons, -and string operations will be
performed.    Therefore if basic processor characteristics are unchanged, then these will take precisely
the same amount of computing power, and this component of the system performance will remain
unchanged.

The other component affecting the speed of execution of a single program is the time it takes to execute
each of the primitive system operations it calls. We assert without proof that the facilities of each of our
two canonical models can be made to execute as efficiently as the corresponding facilities of the other
model.   I.e.,

Sending a message, with its inherent need to allocate a message block and manipulate a queue
and its possibility of forcing a context (process) switch, is a computation of the same
complexity as that of calling or FOR King to an ENTRY procedure, which involves the same
need to allocate, queue, and force a context switch.
Leaving a monitor, with the possibility of having to unqueue a waiting process and re-enter it,
is an operation of the same complexity as that of waiting for new messages.
Process switching can be made equally fast in either system, and for similar machine
architectures this means saving the same amount of state information. The same is true for the
scheduling and dispatching of processes at the 'microscopic' level.

14
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Virtual memory and paging or swapping can even be used with equal effectiveness in either
model.

As evidence for this belief, we cite the GEC 4080[2], in which message queuing, process switching,
and dispatching are implemented as fast operations in microcode, and an implementation of the Mesa
system in which the dual operations are also implemented in microcode with similar speed. In general,
we have observed that a message-oriented operating system kernel implemented by a dedicated team
on a friendly machine architecture can be made very efficient relative to the basic cycle time of that
machine. But we have also observed that the same is true for a procedure-oriented system if the
machine architecture is appropriate for that We can find no inherent differences in the two approaches.

Note that it is also possible to make the basic operations of the two models behave identically with
respect to the scheduling and dispatching of client processes. That is, if the message system
implements a particular discipline for queuing and unqueuing messages, then the procedure-oriented
system can implement exactly the same discipline for its queuing and unqueuing of processes.
Similarly, if one system forces a context switch in a particular circumstance, either as a result of a
kernel operation or a pre-emption due to an external event, then the other model can do exactly the
same in response to the dual circumstance. Thus, not only will operations happen just as quickly in one
model as in the other, but corresponding events will happen in the same order.

This means that the third component affecting the performance of a suite of programs - namely the way
in whicri the executions of those programs interact with others - is also invariant under the duality
transformation, assuming that the two previous components are. Each message between processes (or
between a process and a device) in the message-oriented system corresponds in the other system to a
call to or return from a synchronous or asynchronous ENTRY procedure. If the message has to be
queued because the destination process is not ready to receive it, then the procedure call will also be
queued at its monitor, WAIT statement, or JOIN statement for the same length of lime. The same external
events will cause the congestion of a resource manager (either process or monitor) to be relieved at the
same time. The peripheral devices will exhibit the same behaviour with respect to such issues as
latency, response time, transfer times, etc., and thus the processes waiting for them to complete will
wait just as long. Furthermore, the scheduling and dispatching can be arranged so that the same number
of context switches, allocations of message blocks or local frames, etc., take place whether it is a
message-"or procedure-oriented system.

From these arguments, we claim that the total lifetime of a computation is the same for the two models,
as is the juxtaposition of that lifetime with respect the lifetimes of other computations. In the
procedure-oriented model, the computation corresponds to a process with its call stack. During its life,
it wanders through the system, occasionally executing code, occasionally waiting in queues,
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always crossing context boundaries by means of procedure calls and returns. But in the message-
oriented model, the computation is represented only partly by the execution of code and partly by the
transmission of messages. It also wanders through the system, occasionally executing the code of some
process but always taking the form of a message when it crosses context boundaries or waits in queues.

Empirical Support

For accidental reasons, it is not very easy to change the structure of most operating systems in a way
which would reflect the duality we suggest. The underlying addressing structures, use-of global data,
and styles of communication are usually so bound to the design and implementation that performing
the transformation to a dual version would be a major exercise, not justified by the second order gains.
Accordingly, there is not much evidence of example which can be quoted in support of our thesis.

However, one case can be cited, namely the Cambridge CAP Computer [7]. This system has a
structure which leads to the complete addressing encapsulation of each system module, and to an
operating system in which each module is implemented as a complete program (normally Algol68C).
It was a basic design principle that any system data structure be managed by a single module (or
protected procedure, in CAP terminology). An instance of such a procedure might be found in many or
all of the processes in the system. Though this design approach was adopted for quite independent
reasons, it turned out to facilitate just the kind of restructuring which we are discussing in this paper.

For example, the original design had a process which was devoted to the management of system
internal names, which constituted a sort of central file directory referenced by all ordinary directories.
This process was activated by messages to recover details of particular filed objects and to increment
or decrement their reference counts. It was noticed that the message system was rather expensive, and
accordingly the management program was incorporated in each process as a protected procedure. The
text of the program hardly had to be changed at all, and the changes which were made were trivial.
Partly as a result of this observation, a programming style was adopted for the rest of the operating
system with a view to facilitating similar rearrangements later [8].   This turned out to be strikingly
similar to the abstract models of this paper.

The ease of rearrangement of the CAP system was a consequence of a programming style originally
adopted because of the protection structure of the machine, but there seems little reason to doubt that
similar conventions could be adopted without loss in a more ordinary computer. B. J. Stroustrup has
made some proposals in [9] which are relevant here.
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Underlying Differences between Styles

The conclusion which we can draw from our canonical models and the observations we made about
them is that there is no inherent difference between the two styles of system design or the programs
that use them. That is, the two styles lead to client systems with similar program structure and
performance (a "zeroth-order" consideration).  Furthermore, the computational complexity of the
implementations of the system facilities to provide the two styles is similar (a "first-order"
consideration). Thus the basis for preferring one style to the other must be found in some second- or
higher-order consideration. It must be two or more steps removed from the primary consideration of
the designer of the application of the system. We believe that this basis is in the nature of the substrate
- i.e., machine architecture and/or programming environment -on which the process and
synchronization facilities are implemented. The factors and design decisions of the system upon which
the process and synchronization facilities are built are the things which make one or the other style
more attractive or more tedious.

Thus on one machine, the notion of process may be intimately tied to that of virtual memory, and it
may be easy to allocate message blocks and queue messages, but very difficult to to build a protected
procedure call mechanism. In this case, a message-oriented style is probably the best. On another
system with an Algol-like stack and block structured allocation, the procedure-oriented model is
probably more suitable. Other such factors include the organization of real and virtual memory, the
size of the stateword which must be saved on every- context switch, the ease with which scheduling
and dispatching can be done, the arrangement of peripheral devices and interrupts, and the architecture
of the instruction set and the programmable registers. These are usually chosen or constrained before
the design of any application (or even the operating system kernel) is contemplated. It is rare that the
operating system designer has a great influence on these factors and even rarer that he has complete
control over them. Thus he normally faced with having to build the most reasonable set of primitives
he can without incurring large computational penalties in the most basic operations of his system.

If this is the case, then the arguments about processes and synchronization which are often found in the
corridors of organizations actively designing a new system (and which occasionally find their way into
the literature) take on a decidedly non-technical tone. In our experience, they tend to be highly
emotional, they consume far more energy than any other part of the system, they occasionally lead to
organizational difficulties, and they are about issues which this analysis suggests are irrelevant. They
are characterised by someone representing one style as being unable to reconcile the system
organization postulated by the other style with the limitations and constraints he has learned by
analysis or bitter experience, and by a mutual feeling on the other side. Part of the problem is that the
the common notion of process evokes wildly different implications in the two worlds, which we have
shown is indeed the case. The result of such arguments is rarely an understanding of the equivalence of
the two approaches, but rather an
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unpleasant compromise for all involved.

Conclusions

Our analysis is likely to be controversial. Like those of any empirical science, our conclusions cannot
be accepted without a lot of thought and supporting experiments. We have found that the duality
between the two categories o( system design is a notion which defies belief amongst a non-trivial
sample of our colleagues. The observations about the similarity of program logic, code, and
performance are particularly hard to accept when the universe of discourse is not one of naturally
occurring objects but man-made ones.   Time will tell whether they are correct

We have several objectives in developing this analysis. First, we want to eliminate some of the
uninformed controversy about which kinds of systems are "better" to build. We find merit in both
styles, with respect to structure, performance, logical soundness, elegance, and "correctness." Second,
we are able to eliminate several degrees of freedom in the design process, thus allowing the design of
better, more consistent, more reliable systems at lower cost Once a choice is made between the two
styles, many of the properties of "good" system design follow naturally. It is no longer necessary to
make separate, independent choices about related issues, with the risk of introducing some
fundamental incompatibility which will not be perceived until too late after the system starts to
operate. Finally, we remark that the equivalence between the two styles of system design suggests that
it might be possible to devise a uniform way of modelling the interactions between system
components, whether by messages or by procedures, in order to derive better means of calculating the
system performance before it is designed instead of after.
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