
Communicating with the Kernel

Azza Abouzied

Process

What is a process

A process is an abstraction that provides the illusion to a program
that it has its own abstract machine.

2

What is a process?

1. Process provides illusion of a private memory system: address
space. (Learn how with virutal memory & paging)

2. Process provides illusion of its own CPU to execute instructions:
thread of execution

3. Kernel maintains state for each process (Learn how with process
management)
• process descriptor tables

• kernel stack (different from the user-process stack)

• run state

• page tables

3

Contexts in Operation

At any point in time, a processor is in one of the following three
states

1. In user-space, executing user code in a process

2. In kernel-space, in process context, executing on behalf of a
specific process

3. In kernel-space, in interrupt context, not associated with a
process, handling an interrupt

Even when nothing is running, the idle-process runs.

4

Application | Kernel: System Call

Application | Kernel

Why do we need a layer (i.e. the kernel) between hardware & user
space process

1. Abstraction: Read and write files regardless of
disk/network/filesystem etc.

2. Security: Kernel arbitrates access based on permissions, users,
available resources, etc.

3. Virtualization: Multitasking, virtual memory, etc.

6

The System Call

Figure: From Linux Kernel Development by Robert Love
7

What are examples of system calls?

1. Process control: e.g. create, terminate, load, get or set process
attributes, wait/sleep (fork(), exit(), getpid(), wait(), sleep())

2. File management: create, open, delete, close, read, write,
get/set file attributes (open(), read(), write(), close())

3. Device management read, write, mount, ...

4. Information: time, date, get or set this system data, ... (alarm(),
time())

5. Communication: pipes, send, receive, ... (pipe(), mmap())

6. Protection: get or set permissions, ... (chmod(), chown())

8

Steps within a system call

1. User space cannot execute kernel code directly via a function
call - Why?

2. Each system call has a unique number. User space code sticks
that number into the%eax register.

3. Use registers%ebx, %ecx, %edx, %esi, %edi for parameters or
a single register to hold a pointer to user-space for more than 5
parameters...1

4. Now generate the switch to kernel mode with the help of a
software interrupt: int $0x80

1On some systems, parameters are pushed onto the user-stack.
9

The int n instruction

On the x86, interrupt handlers are defined in an interrupt descriptor
table (IDT). The IDT has 256 entries, each giving the%cs and%eip

to be used when handling the corresponding interrupt.

10

The int n instruction - what the hardware does?

1. $x80 or 128 in IDT points to the kernel entry point for the
system call handler

2. In x86, information about whether we are in user-space or
kernel-space is encoded within%eip.

3. If we are switching from user-space to kernel-space (i.e. system
call was made from a user process), save user-stack registers
(%esp, %ss)

4. Load kernel stack registers from task state segment

5. Push onto the kernel stack the user stack information: e.g.
%esp, %ss,%eflags, %cs, %eip,

6. Set the values of%cs, %eip to the kernel entry point for the
syscall handler.

11

After int n instruction

1. The system call handler uses a system call table to determine
the function to call: call *sys_call_table(,%eax,4)

2. Return values in the %eax register

3. Control returned to user with iret, which reverses what
int $0x80 does.

12

Hardware | Kernel: Interrupt

How do you get the attention of the kernel from hardware?

2 options

14

How do you get the attention of the kernel from hardware?

2 options
Polling vs. Interrupts

15

Recap

Getting the Kernel’s Attention

The kernel is not a process itself but rather a process manager!

17

Interrupt Handling

Interrupt Handling

How is exception handling different?

19

How is this different from system calls?

20

Differences between System Calls & Interrupts

1. Kernel executes a system call in process-context, not
interrupt-context.
• A system call can block/sleep. Interrupt handler routines cannot!

• Interrupt handlers in Linux divide labor into a fast top half and a
bottom half that can be rescheduled later and has access to
blocking calls.

2. Interrupts Handlers still use the kernel stack of the interrupted
process. (Some Linux versions however have a special Interrupt
stack). Regardless keep memory usage small.

21

Reentrancy

All modern kernels are reentrant: i.e., several processes may be
executing in Kernel Mode at the same time.

1. Interrupts on different lines are enabled on other processors and
even the currently interrupted one.

2. There is still room for race conditions across processors

3. Kernel data structures can be accessed by other processors so
you need some sort of locking

22

Why do interrupt handlers only form the top half of interrupt
processing?

23

Why?

1. Interrupts are async: they interrupt potentially important code!

2. Other interrupts at least on the same line or possibly all
interrupts are disabled preventing hardware from
communicating with the OS.

3. Time-critical as they deal with hardware

4. No process context so they cannot block because the kernel
cannot put the interrupt handler on the scheduler’s queue to be
run at a later time when ready.

24

25

Rules for Top/Bottom Halves

1. Time sensitive?

2. Requires Hardware?

3. Should not be interrupted especially by this interrupt?

26

Network Card

1. Network card interrupts when a packet is received

2. The top-half acknowledges and copies data into memory:
• time-sensitive: network card buffer is small; must free it quickly
and move it to memory

3. The bottom-half then takes care of enqueuing the packet for the
receiving application.

27

Class Exercise

Task 1: Pick any system call

• Why is this a system call and
not a standard C library
function that can be linked
into user-address space?

• What does it do?

• List out all the steps involved
in executing the system call

• Why do the steps occur the
way they do?

• Are there different OS
implementations?

Task 2: Pick any interrupt

• Does the interrupt have a
dedicated IRQ?

• How is the interrupt handled?

• What actions should the ISR
do in the top-half? Why?

• What actions should it do in
the bottom-half? Why?

28

Questions?

29

	Process
	Application | Kernel: System Call
	Hardware | Kernel: Interrupt
	Recap
	Interrupt Handling

