
Concurrency Control

Azza Abouzied

Synchronization

Case Study: The Ad server

Multi-threaded Ad Server counts number of times an ad was served:
0.001 fils/ad!!!

int hc; //global variable holding count of total hits

void update_hit_counter{
hc++;

}

2

From C to Assembly

hc++;

becomes

movl hc, %eax ;get hc
addl $1, %eax ;increment hc
movl %eax, hc ;store hc

3

The Life of Two Threads

Thread 1 Thread 2

movl hc, %eax
get hc → 5
addl $1, %eax
increment hc → 6
movl %eax, hc
store hc → 6

movl hc, %eax
get hc → 6
addl $1, %eax
increment hc → 7
movl %eax, hc
store hc → 7

4

Damnatio Memoriae of a thread

Thread 1 Thread 2

movl hc, %eax
get hc → 5

movl hc, %eax
get hc → 5

addl $1, %eax
increment hc → 6

addl $1, %eax
increment hc → 6

movl %eax, hc
store hc → 6

movl %eax, hc
store hc → 6

5

Race Conditions

6

Race Conditions

Order of threads affects outcome of the computation then we have
race conditions. These create non-determinism!

Code paths that access/manipulate shared data are critical sections.

If a critical section executes atomically then we prevent concurrent
access to shared data at critical sections.

Thread 1 Thread 2

get hc; increment hc; store hc;
get hc; increment hc; store hc;

Thread 1 Thread 2

get hc; increment hc; store hc;
get hc; increment hc; store hc;

7

What about mutual exclusion? Locking

Thread 1 Thread 2

try to acquire lock try to acquire lock
Success: lock acquired Failed: wait ...

get hc wait
increment hc wait

store hc wait
unlock lock wait

... Success: lock acquired
...

But you just pushed the problem to this lock thing ... how do you
make a lock?

What if another process ignores the locks: locks are advisory and
voluntary

8

Sources of Concurrency

• Interrupts

• User-space preemption: The scheduler decides when to
preempt you and when to execute you

• Kernel preemption: The kernel itself is a multi-threaded beast
sharing address space and is preemptive

• Sleep, Block

• SMP: two processors can be executing the same code at exactly
the same time (kernel or user)

9

Protect your code

• Interrupts— interrupt-safe

• User-space preemption: The scheduler decides when to
preempt you and when to execute you — preempt-safe

• Kernel preemption: The kernel itself is a multi-threaded beast
sharing address space and is preemptive — preempt-safe

• Sleep, Block— preempt-safe

• SMP: two processors can be executing the same code at exactly
the same time (kernel or user) — SMP-safe

10

Synchronization Primitives

Our first lock

int hc_busy;
int hc;

void update_hit_counter(){
while(hc_busy);
hc_busy = 1;
hc++; //Critical Section
hc_busy = 0;

}

Why does this not work?

12

Our first lock

int hc_busy;
int hc;

void update_hit_counter(){
while(hc_busy);
hc_busy = 1;
hc++; //Critical Section
hc_busy = 0;

}

Why does this not work?

13

The crux of any synchronization primitive is the ability to run atomic
operations. All architectures provide a test_and_set() instruction. On

x86 this is the

lock cmpxchg %eax, lock_in_mem

14

The Spin Lock

int hc_busy;
int hc;

void update_hit_counter(){
while(1){ //Spin Lock
if(test_and_set(hc_busy, 1)){
hc++; //Critical Section
test_and_set(hc_busy, 0);
return;

}
}

}

15

What if you have no hardware support for atomic operations?

16

If interrupts are sources of concurrency, can’t we just disable
interrupts?

cli disabled interrupts on a uniprocessor, sti enabled interrupts.

17

Locking without hardware support

int hc;
int thread_waiting[2];

void update_hit_counter(int me){
thread_waiting[me] = 1;
while(1){
if(thread_waiting[!me] == 0) break;

}
hc++;
thread_waiting[me] = 0;

}

18

Peterson’s algorithm

int hc;
int turn;
int thread_waiting[2];

void update_hit_counter(int me){
thread_waiting[me] = 1;
turn = me; //my turn to wait
while(1){
if(thread_waiting[!me] == 0) break;
if(turn != me) break;

}
hc++;
thread_waiting[me] = 0;

}

19

Questions?

20

	Synchronization
	Synchronization Primitives

