
Concurrency Control

Azza Abouzied



From Last Class: Synchronization Primitives



Race Conditions

2



Race Conditions

Order of threads affects outcome of the computation then we have
race conditions. These create non-determinism!

Code paths that access/manipulate shared data are critical sections.

If a critical section executes atomically then we prevent concurrent
access to shared data at critical sections.

Thread 1 Thread 2

get hc; increment hc; store hc;
get hc; increment hc; store hc;

Thread 1 Thread 2

get hc; increment hc; store hc;
get hc; increment hc; store hc;

3



Sources of Concurrency

• Interrupts

• User-space preemption: The scheduler decides when to
preempt you and when to execute you

• Kernel preemption: The kernel itself is a multi-threaded beast
sharing address space and is preemptive

• Sleep, Block

• SMP: two processors can be executing the same code at exactly
the same time (kernel or user)

4



What about mutual exclusion? Locking

Thread 1 Thread 2

try to acquire lock try to acquire lock
Success: lock acquired Failed: wait ...

get hc wait
increment hc wait

store hc wait
unlock lock wait

... Success: lock acquired
...

But you just pushed the problem to this lock thing ... how do you
make a lock?

What if another process ignores the locks: locks are advisory and
voluntary

5



The Spin Lock

int hc_busy;
int hc;

void update_hit_counter(){
while(1){ //Spin Lock
if(test_and_set(hc_busy, 1)){
hc++; //Critical Section
test_and_set(hc_busy, 0);
return;

}
}

}

6



More Synchronization Primitives



Mutex — The sleeping version of a spin lock

acquire_lock(int* lock){
while(1){
if(test_and_set(lock, 1)) return;
yield(); /* go to bed */

}
}

release_lock(int* lock){
test_and_set(lock, 0);

}

8



The bounded buffer

b[0]

b[1]

b[2]

b[3]b[4]

b[5]

b[6]

b[7] in MOD N
in = 9

out MOD N
out = 4

N=8

b[0] b[1] b[2] b[3] b[4] b[5] b[6] b[7]

in out

9



Synchronizing Producers and Consumers on the buffer: Sol 1

void produce(b, m){
while(1){
if(in - out < N){
b[in % N] = m;
in++;
return;
}
}
}

msg consume(b){
while(1){
if(in > out){
m = b[out % N]
out++;
return m;
}
}
}

10



What is wrong with sol 1?

1. Single Producer / Consumer

2. Spin Lock Solution

3. Tricky to implement: What happens if we swap increment &
buffer write?

11



How to make this work with multiple producers?

void produce(b, m){
while(1){
acquire(write_lock);
if(in - out < N){
b[in % N] = m;
in++;
release(write_lock);
return;

}
}

}

Will this work?

12



How to make this work with multiple producers?

void produce(b, m){
while(1){
acquire(write_lock);
if(in - out < N){
b[in % N] = m;
in++;
release(write_lock);
return;

}
release(write_lock);

}
}

Will this work?

13



What about multiple consumers?

14



Mutexes to the Rescue: Sol 2

void producer(){
while(1){
if(count == N)
sleep();

push(m, b);
count++;
if(count == 1)
wakeup(consumer);

}
}

void consumer(){
while(1){
if(count == 0)
sleep();

pull(m, b);
count--;
if(count == N - 1)
wakeup(producer);

}
}

15



The Nightmare Scenario

1. Buffer Empty: before consumer sleeps it is interrupted.
if (count == 0) ... <INTERRUPT>

2. Buffer is empty, so producer puts an item, and wakes consumer
up.

3. But consumer didn’t really sleep, it will now go to sleep (and it
will miss the wake up call) ... sleep();

4. Eventually producer fills up the buffer and they sleep in peace
forever

16



The birth of Dijkstra’s semaphore: the wake-up counter

void wait(Semaphore* s){
while(1){
acquire(s->lock);
if(s->counter > 0){
s->counter--;
release(s->lock);
return;

}
release(sem->lock);
sleep(x ms);

}
}

void signal(Semaphore* s){
acquire(s->lock);
s->counter++;
release(s->lock);

}

Typically kernels use wait queues instead of sleep calls. Why?

17



Producer/Consumer with Semaphores

Semaphore empty = N;
Sempahore mutex = 1;
Sempahore full = 0;
void producer(){
while(1){
wait(empty);
wait(mutex);
push(m, b);
signal(mutex);
signal(full);

}
}

void consumer(){
while(1){
wait(full);
wait(mutex);
pull(m, b);
signal(mutex);
signal(empty);

}
}

The binary semaphore mutex does not have to be a semaphore!
What happens if we flip wait(mutex) and wait(full)?

18



Rules of thumb: Spin Lock or Mutex/Semaphore?

Spin Lock Mutex/Semaphore

Short lock hold time Long lock hold time
Interrupt context locking Process context locking
Quick & Low overhead Overhead of sleeping, main-

taining wait queues, waking
up threads can surpass lock
time!

19



Questions?

20


	From Last Class: Synchronization Primitives
	More Synchronization Primitives

