
Barriers, Deadlocks & Dining Philosophers

Azza Abouzied



From Last Class: Semaphores



Semaphores: Initialization

struct semaphore{
int count;
int lock;

};

void sema_init(semaphore *s, int count){
s->count = count;
s->lock = 0;

}

2



Semaphores: down & up

//up or signal
void up(semaphore *s){

//can be test & set
acquire(s->lock);

s->count++;

release(s->lock);
}

//down or wait
void down(semaphore *s){
while(1){
acquire(s->lock);
if(s->count > 0){
s->count--;
release(s->lock);
return;

}
release(s->lock);
yield();
}
}

3



Producer/Consumer with Semaphores
semaphore empty, mutex, full;
sema_init(&empty, N);
sema_init(&mutex, 1);
sema_init(&full, 0);

void producer(){
while(1){
down(&empty);
down(&mutex);
push(m, b);
up(&mutex);
up(&full);
}
}

void consumer(){
while(1){
down(&full);
down(&mutex);
pull(m, b);
up(&mutex);
up(&empty);
}
}

The binary semaphore mutex does not have to be a semaphore!
What happens if we flip down(mutex) and down(full)?

4



Rule of thumb: Spin Lock or Mutex/Semaphore?

Spin Lock Mutex/Semaphore

Short lock hold time Long lock hold time
Interrupt context locking Process context locking
Quick & Low overhead Overhead of sleeping, main-

taining wait queues, waking
up threads can surpass lock
time!

5



Ordering



What about Order?

Initially, a = 1, b= 2. What can you say about the values of c & d?

Thread 1 Thread 2

a = 3
b = 4

c = b
d = a

7



Out of order processing

1. Processors can run read and write instructions out of order for
performance (say by keeping the pipeline full), especially if there
are no clear dependencies

2. A compiler can also reorder instructions when optimizing code

3. In SMP, a processor has no information on what is going on
another processor

8



What about Order? Memory Barriers to the rescue!

Initially, a = 1, b= 2.

Thread 1 Thread 2

a = 3
memory_barrier()

b = 4
c = b

memory_barrier()
d = a

What does each barrier ensure?

Protects against c = 4 and d = 1 but not c = 2 and d = 3

9



What about Phases? Barriers to the rescue!

A Pthreads barrier defines a set of participating threads at program
startup or barrier instantiation.

#define THREADS 10
pthread_barrier_t barr;
int main(){
pthread_t thr[THREADS];
for(int i = 0; i < THREADS; ++i)
pthread_create(&thr[i], NULL,
&entry_point, (void*)i));

...
}
void * entry_point(void *arg){
/* First phase of computation */
// Synchronization point
int rc = pthread_barrier_wait(&barr);
/* Second phase of compuation */

}
10



Implementing software barriers

Shared Memory Implementation

1. Each thread indicates its arrival at the barrier

2. Updates some shared state (counter++)

3. Busy-waits on shared state to determine when all the other
threads have arrived (counter >= THREADS)

4. Once all threads arrived, each thread exits the busy loop

Other dynamic implementations exist.

Implicit barriers: Message passing systems that require global
communication.

MapReduce/Hadoop is a popular distributed systems framework that
uses barriers!

11



Deadlock

12



Deadlocks

Two or more tasks do not make progress because each is waiting for
a resource held by another process

Related Concept: Starvation: Tasks wait indefinitely.

13



Some Examples

Memory
A wants 1.5 GB of memory, B wants 1.5 GB of memory.
System has 2 GB and A has 1, B has 1.

IO
A wants keyboard has screen.
B wants screen has keyboard

Bidirectional pipes
A outputs B, B outputs C, A consumes C.

14



Coffman’s Conditions for deadlock - 1971

All conditions must hold for a deadlock

1. Mutual Exclusion

2. Hold and Wait

3. No Preemption

4. Circular Wait

15



Preventing Deadlocks

Break one condition and you prevent a deadlock

1. Mutual Exclusion
Read only files; Resource Partitioning;
Lock free data structures

2. Hold and Wait
One resource only at a time; Consolidate into one; Request all at
once (Issues?)

3. No Preemption
Allow preemption helps with Priority Inversion Problems;
Rollback to safe state

4. Circular Wait
Require process to grab resources according to some order
(Issues?)

16



Preventing Deadlocks

Break one condition and you prevent a deadlock

1. Mutual Exclusion
Read only files; Resource Partitioning;
Lock free data structures

2. Hold and Wait
One resource only at a time; Consolidate into one; Request all at
once (Issues?)

3. No Preemption
Allow preemption helps with Priority Inversion Problems;
Rollback to safe state

4. Circular Wait
Require process to grab resources according to some order
(Issues?)

17



Dealing with deadlocks in practice

Do Nothing
This will teach the user a lesson!
Reboot!

Kill Process
Bloodthirsty: kill everyone
Serial: Kill one at a time until there is no deadlock

18



Dealing with synchronization & deadlocks abstractly

19



An initial solution - will this work?

void philosopher() {
while(1) {
think();
get_left_fork();
get_right_fork();
eat();
put_left_fork();
put_right_fork();

}
}

20



Solution 2

Examine the handout. Will it work? Why so?

21



Synchronization & Deadlocks

Make sure you read other concepts covered in the textbook like
Monitors, Deadlock Avoidance, Banker’s algorithm, Dining

Philosopher’s, etc.

22



Questions?

23


