Mutltiprogramming, Multithreading and
Event-driven programming

Azza Abouzied

What is a process

A bundle of things:
1. A thread of execution
2. Program counter, registers, stack (execution history)
3. Address space

4. Resources managed by the kernel

e Pointers to system resources: e.g. file descriptors
e Privileges & User
e Current working directory

e Bookkeeping stuff: resource tracking; address-space management
(e.g. process id, current state, ...)

What happens on a context switch?

Context switching, the switching from one runnable task to another.
Occurs at interrupts, system calls, any preemption
Kernel sets up the environment for the process to continue working.

Is the process the right level of abstraction?

Case Study: A Web Server

The Single Process Web Server

Page Request
Is in cache?

ayoen

Page Response
—

Web server: Running

The Single Process Web Server

Page Request

Page Requests

NOT IN CACHE

Web server: Blocked

ayoen

DISK

The server with N processes

4 N\ \
Fork/Exec Server 1 Cache

. J . J

f 4 N\ \
—_— Server 2 Cache

—> Request Handler

J . J

. e N\ [/ N\
\—) Server 3 Cache

Why is this bad?

A server with several processes is generally a bad idea:
1. Expensive Context Switching between processes
2. Independent Address spaces when caches need to be shared!?

3. Limited # of processes that can be issued (Kernel sets these
limits)

10Okay, okay ... you can declare a shared memory space between processes but we
haven't gotten there yet ;)

The Multithreaded Server

Web server process

|
i

Dispatcher thread
Worker thread User
space
Web page cache
Kernel
Kernel space
Network

connection

A Thread vs. a process

What do you need to take care of during a context switch between
one user process and another and between two threads in a user

process?
Process Thread
Everything in the thread Program Counter
Address space Stack
Global variables Registers
Open files State

Child processes

Pending alarms

Registered Interrupts/Signals & handlers
Bookkeeping stuff (pids, priveleges, ...)

The devil in the details

How are threads implemented actually matters?

Frocess Thread Process Thread
User
space {
Kernel
8 < Ken ne\ Kernel = %
pace 7 S
/ l [
Run-time Thread Process Process Thread
system table table table table

1. User-level threads (Many to one) vs. Kernel-level threads (One
to one).

2. Linux, Mac OS, WindowsXP, Solaris provide 1-1 mappings.
3. There are many Many to few implementations as well.

What are the advantages and disadvantages of the different models?

Wait! There is more!

The event-driven server

The problem with our first server was that IO resulted in blocking
calls.

1. The OS can provide non-blocking/asynchronous IO calls

2. We can build the process in a way that behaves like interrupt
handling except we call it event handling.

There are event-driven servers in the wild: Node.js, memcached, etc.

12

The Node.js Server

REGISTERCALLBACK
,&&

REQUESTS

INTENSIVE
OPERATION

EVENT LOOP
(Single Thread)

FILE SYSTEMS

DATABASE

TRIGGER CALLBACK
COMPUTATION

_— W._OPERATION -

COMPLETE

13

Event-driven or Multithreaded?

Not an easy debate to settle:

e 1995, Why threads are a bad idea? John Ousterhout (UC
Berkeley, Sun Labs)

e 2003, Why events are a bad idea? Van Behren, Condit, Brewer
(UC Berkeley)

Why did we favor events in 19957
Which ones are easier to program?

Which ones require less resources?

14

Reading & Critiquing a Paper

How to read a paper in general?
The Design Arguments

Evidence

How do you knou'?
""""""""""""""""" <~ Need Thesis

Evidence
Stakeholders + Domain Entity E, in context € / | How do existin g approaches
CoreTension With goal G but obstacles O fail ?

Satisfy constraints X
Minimize costs Y
Avoid obstacles Z

Axioms Principles & Constraints A X
i What did they borrow from other |
/ solutions in other settings? |

Approach Thesis
Has characteristics T
Achieve goal G
Avoids obstacles O

What makes this solution
different from those that
failed?

What was the response to the
i proposed approach?

i

15

FFS Annotated

A Fast File System for UNIX*

Marshall Kirk McKusick, William N. Joyf,
Samuel J. Lefflert, Robert S. Fabry

Computer Systems Research Group
Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, CA 94720

g ABSTRACT

A reimplementation of the UNIX file system is described. The reimplementation

provides substantially higher throughput rates by using more flexible allocation policies
that allow better locality of reference and can be adapted to a wide range of peripheral

and processor characteristics. The new file system clusters data that is sequentially
accessed and provides two block sizes to allow fast access to large files while not wasting

large amounts of space for small files. File access rates of up to ten times faster than the

traditional UNIX file system are experienced. Long needed enhancements to the pro-
grammers’ interface are discussed. These include a mechanism to place advisory locks
on files, extensions of the name space across file systems, the ability to use long file

names, and provisions for admi ive control of usage.

Annotate the paper with the design arguments: ,
Characteristics, Approach, Context, Needs, ... etc.

16

Critiquing

Read the blog post https://azzablogs.com/2019/01/23/
how-to-write-a-critique-for-a-research-paper/

Use the design arguments to help you describe the work.

Great critiques anticipate future contexts and needs and
re-examine the work in light of those.

1. Discuss Pros and Cons with the future in mind (or the present if
the paper is from the past).

2. Does the work handle new technology (e.g. hardware,
applications) in the horizon?

3. Does it scale to current workloads (consumer or enterprise)?

4. If not, why and how would you modify it?

17

https://azzablogs.com/2019/01/23/how-to-write-a-critique-for-a-research-paper/
https://azzablogs.com/2019/01/23/how-to-write-a-critique-for-a-research-paper/

Questions?

