
Priority Scheduling

Azza Abouzied



From Last Class: Scheduling Recap



Hybrids are almost always better

Quick Recap: We looked at single queue RR or FCFS algorithms.

Suppose you have
A: 80ms, B: 80ms, C: 50ms cpu; 160ms io

RR only

CPU utilization: 67%; Disk utilization: 40%

RR + FCFS queue for IO-bound tasks. Priority goes to IO task.

CPU utilization: 100%; Disk utilization: 60%

2



Terminology

Terms defined differently:

Mean Response time or latency: average time between arrival to
completion of requests.

Others use the time to ‘first response,’ which is also messy to define
... is it time to be scheduled? That gets us into the murky wait time
territory, which is also time waiting ready to be run but put in the
ready queue. Others use turnaround time to mean time to
completion.

3



How long is a context-switch

Generally not long enough to matter but if there are too many
context switches then it matters.

Context switch lasts from 100ns to 30µs. In Linux, the minimum
granularity of a time slice can be as low as 1ms. At that rate, the
context switch can be roughly 3% overhead!

4



Priority Scheduling



The Gist

1. Each process gets a priority.

2. Highest runs first. Can preempt the currently running process
and take its place if higher priority.

3. Priorities can serve other purposes:
• Interactive process get high priority

• CPU-bound get low priority

6



Approach 1: Multi-level feedback queues

Priority Alloted Time Slice

4 1

3 2

2 4

1 8

• Task starts at the highest priority.

• On timeout, it moves to the next lower priority queue;

• On interrupt, it moves up.

What does this scheduling algorithm achieve for IO-bound vs.
CPU-bound?

7



Approach 2: Unix/Early Linux O(1) scheduler approach

Integrating user-defined priorities: Nice values (-20 to +20) map to
priority map to time slices.

• Low nice→ high priority→ large time slice

• High nice→ low priority→ small time slice

Think of nice as a process’s personality: the nicer it is, the more time
it gives to others.

Runqueues further split into multiple queues of different priority.

The time slice alloted to a certain priority is calculated by scaling the
priority range to the min, max time slice range

Can dynamically change priorities by boosting priority of a sleeping
process or penalizing priority of a CPU-bound process.

Can this lead to problems?
8



Some problems

1. Not ideal: you want low priority CPU-bound tasks to actually
have longer timeslices.

2. Additive scale. Differences in time slices are additive so larger
relative time differences at the ends of the priority scale.

3. May not port well as timeslice now depends on timer ticks.

4. What about sleeper fairness? Boosting does help but you can
game the system.

9



A definition of fairness?

What is perfect multitasking?

1. Two equal-priority processes get 50% of CPU-time: one runs
for 100ms, the second runs for a 100ms.

2. Two equal-priority processes get 50% of CPU-time: both run
simultaneously taking 50% of the processor.

Why is the second impossible multitasking more fair?

Fair-share scheduling. Suppose there was no overhead to
context-switching, then if we switch frequently and fast enough
between processes we can get close to perfect multitasking. Map
priorities to shares of the processor rather than time slice allotments.

10



The Completely-Fair Scheduler

Ideal multi-tasking CPU is a
non-existent CPU which can divy up its
power precisely among tasks and
execute them in parallel:

• 2 tasks of equal priority of 100 ms
length run simultaneously on the
CPU for 200ms each using 50%
CPU power.

Problem: On real hardware, we can only
run a single task at once.
Solution: Virtualization/Illusion

Virtual Runtime: “the
rate at which time
passes depends on
your frame of
reference priority”

11



CFS - a simplified outline

Virtual Run Time vti: For each task, the kernel keeps track of the
actual time spent on the CPU and then weighs that time by task
priority. e.g. vti += 1/priorityi × actualruntimei

1. Order tasks by virtual run time vti

2. Schedule task i with the least vti

3. Run task for some maximum execution time or until it is
interrupted or blocks

4. Calculate vti

5. Repeat

12



Simplied CFS - details

What is the maximum execution time?

1/N× targetlatency

• O(1) schedulers give constant switching
rate, variable fairness

• Here, we get variable switching rate,
constant fairness

How to quickly find the least vti?

• Store tasks in a Red-Black Tree ordered
by virtual run time

• Pick the left-most node.

1. Order tasks by virtual run
time vti

2. Schedule task i with the
least vti

3. Run task for some
maximum execution time
or until it is interrupted or
blocks

4. Calculate vti

5. Repeat

13



Red-black trees

14



Simplified CFS - Details

• Why have a notion of max-execution
time?

• What happens when there are many
tasks? Minimum granularity time. Is that
fair?

• How does virtual run time handle
sleeper fairness?

• What about new tasks? minivti

• How does it deal with priorities?
Geometric scaling

1. Order tasks by virtual run
time vti

2. Schedule task i with the
least vti

3. Run task for some
maximum execution time
or until it is interrupted or
blocks

4. Calculate vti

5. Repeat

15



Solution 3: Lottery Scheduling

How it works?

1. Each job gets a set of tickets.

2. Randomly pick a set of tickets

3. Schedule those

How can you use this for?

1. Priority

2. Promoting shorter jobs

3. Allowing Cooperation

4. Ensuring Fairness or Preventing Starvation
16



Interaction effects

The interplay of synchronization and preemption/scheduling can
have the following effects:

1. Priority Inversion Problems. Low-priority thread acquires lock
needed by high-priority thread.
Solution: Priority Inheritance: When a thread holds a lock that
other threads are waiting on, give that thread the priority of the
highest-priority thread waiting to get the lock.

2. Convoy Effects. A thread acquires the lock, then suspends.
Other threads come along, and need to acquire the lock to
perform their operations. Everybody suspends until the lock that
has the thread wakes up.

17



Design Exercise



Design an elevator

• m elevators: start with m = 1 then scale. Be careful of
concurrency control.

• n floors

• Rt a request at time time t. Requests are either up or down.

What are you optimizing for? How did that influence your policy?

Expand your design: Introduce priority.

19



Questions?

20


	From Last Class: Scheduling Recap
	Priority Scheduling
	Design Exercise

