
Scheduling Continued

Azza Abouzied



Last Class: The Completely Fair Scheduler



The Completely-Fair Scheduler

Works by having

1. a more fluid notion of a time-slice: the base time slice depends
on the number of currently runnable processes (i.e. size of the
runqueue) and each process is allocated a weigthed time slice
(weighted by priority). Recomputed every few timer ticks.

2. a more fluid notion of time itself: uses virtual runtime to track
how long a process has been running, but time is relative!

2



Solution 3: Lottery Scheduling

How does it work?

1. Each job gets a set of
tickets.

2. Randomly pick a set of
tickets

3. Schedule those

How does it allow for?

1. Priority scheduling

2. Promoting shorter jobs

3. Allowing Cooperation

4. Ensuring Fairness or
Preventing Starvation

3



Interaction effects

The interplay of synchronization and preemption/scheduling can
have the following effects:

1. Priority Inversion Problems. Low-priority thread acquires lock
needed by high-priority thread.
Solution: Priority Inheritance: When a thread holds a lock that
other threads are waiting on, give that thread the priority of the
highest-priority thread waiting to get the lock.

2. Convoy Effects. A thread acquires the lock, then suspends.
Other threads come along, and need to acquire the lock to
perform their operations. Everybody suspends until the lock that
has the thread wakes up.

4



Scheduling across Processors



Scheduling across Processors

Two flavors:

1. Centralized scheduling. Works best for asymmetric
multiprocessing architectures. A dedicated master/scheduler
processor: the scheduler can become a bottleneck

2. Distributed scheduling. Works for symmetric multiprocessing
(SMP) architectures: each processor has its scheduler and its
own set of jobs.
Load Balancing:
• Job pushing

• Work stealing

Processor Affinity: Keep a job on the same processor where all
the memory/cache data exists.

6



Which works best?

The TSA way: Single queue,
multiple servers

The Carrefour way: Multiple
queues, multiple servers

7



Design Exercise



Design an elevator

• m elevators: start with m = 1 then scale. Be careful of
concurrency control.

• n floors

• Rt a request at time time t. Requests are either up or down.

What are you optimizing for? How did that influence your policy?

9



Questions?

10


	Last Class: The Completely Fair Scheduler
	Scheduling across Processors
	Design Exercise

