An Overview of Virtual Memory

Azza Abouzied

Do you know your latency numbers?

Latency Comparison Numbers
L1 cache reference

Branch mispredict

L2 cache reference

Mutex lock/unlock

Main memory reference
Ll

Compress 1K bytes with Zippy
Send 1K bytes over 1 Gbps network

Read 4K randomly from SSD*
Read 1 MB sequentially from memory

Round trip within same datacenter
Read 1 MB sequentially from SSD*
memory

Disk seek

datacenter roundtrip

Read 1 MB sequentially from disk
memory, 20X SSD

Send packet CA->Netherlands->CA

Do you know your latency numbers?

Latency Comparison Numbers

|Ll cache reference 0.5 ns

Branch mispredict 5 ns

|L2 cache reference 7 ns 14x L1
Mutex lock/unlock 25 ns

Nain memory reference 100 ns 200x |
TT

Compress 1K bytes with Zippy 3,000 ns

Send 1K bytes over 1 Gbps network 10,000 ns 0.0lms

|Read 4K randomly from SSD* 150,000 ns 0.15ms 300000xL1
Read I MB sequentially from memory 50,000 ns 0.25 ms

Round trip within same datacenter 500,000 ns 0.5 ms

Read 1 MB sequentially from SSD* 1,000,000 ns 1 ms 4X
memory

Disk seek 10,000,000 ns 10 ms 20x
datacenter roundtrip

Read 1 MB sequentially from disk 20,000,000 ns 20 ms 80x

memory, 20X SSD
Send packet CA->Netherlands->CA 150,000,000 ns 150 ms

Can we keep everything in memory?

Kernel
0x9000
Fortnite
OX6000 Life would be great if we didn’t have to
E— pay 0.15ms to access disk. Let's keep
0x5000 everything in memory!
0x2500
Browser
0x0000

Problem 1: The Jump Issue

Kernel

Fortnite

Email

Browser

0x9000

0x6000

0x5000

0x2500

0x0000

What do the following mean?
Browser: jmp 1000
Fortnight: jmp 1000

Problem 1: The Jump Issue

Kemel What do the following mean?
0x9000 Browser: jmp 1000
Fortnight: jmp 1000
Fortnite
A work around: static relocation
e When loading at adr 0x7000, add
Email e 0x7000 to every address in the
executable code!
e Slow loading
0x2500
e Programs need to define what is
Browser i
relocatable and what is not.
0x0000

Problem 2: The Protection Issue

Writes external to my memory

Kernel Email’s address offsets can range from 0

0x9000 to 0x1000.
Email writes to address offset Ox1001!

Fortnite

0x6000
Email

0x5000
0x2500

Browser

0x0000

Problem 2: The Protection Issue

Writes external to my memory

Kernel Email’s address offsets can range from 0
0x9000 to 0x1000.
Email writes to address offset Ox1001!
Fortnite
A work around: address space &
0x6000 base+bound
Email
0x5000
‘ Virtual Address ‘
2
0x2500 %
No
Browser Fault

Yes
)
Physical Address ‘

0x0000 ‘

Problem 3: More processes than can fit in memory!

A work around: Swapping
Bring in entire process from disk, run it then put it back on disk

Time —
Cc Cc Cc C Cc
B B B B
A
A A A
D D D

Operating Operating Operating Operating Operating Operating Operating
system system system system system system system

@ (b) (© (d) (e Ul (@)

Problem 4: A process grows!

B-Stack
______ : o > Room for growth
B-Data Work arounds?
B-Program Give more than needed!
A'S;ac“ ‘ Problem 5: What if a process just
iiiiii {_____| jRoom for growth needs more memory than your
A-Data entire RAM?
A-Program
Operating
system

The seeds of virtual memory

What do you want from your virtual memory system?

1. Simplicity: Processes get a flat linear address space. Access
addresses from 0 to 232 or O to 24 depending on architecture!

2. Flexibility or Deception: Processes need to move in and out of
memory with partial parts in memory and other parts on disk.
Satisfy processes that require more memory than you have!

3. Efficiency: 80/20 rule. Most of what you need is already on
memory. Occasionally, you will go to disk to get the rest!

The seeds of virtual memory

Mapping Tables

Virtual Address |—> —| Physical Address

The kernel's job is set up these mapping tables for each process.
Hardware handles the mapping table lookup on every virtual
address operation.

But what is the right granularity of mapping? a byte-to-byte? a
whole segment?

Most operating systems opt for paging. Each virtual address maps to
a page address and an offset within it. The mapping tables are
called page tables.

How does paging work?

The simplified view of paging

Virtual Address

| Virtual Page # | Offset | page table size|
An t

index ‘@—* Error
into the Physical Page #
Page » Physical Page #
Table

Physical Page # ‘

—>‘ Physical Page # Offset

Physical Address

10

What are the right numbers for?

Page size: On 32-bits, this is typically 4KB. Can also be 8KB on
64-bit architectures.

Bits in the offset: If a page is 4KB we have 4096 unique bytes we
should be able to address so 212 = 4096. 12 bits.

Page table size: If you want to support flat addresses on 32- or 64-
bit machines then you need to map every virtual address to a
physical address. On 32-bit: 32 — 12 = 20, the table should have
220 entries. With 252 entries on 64-bit with 4KB pages, you can't fit
the page table for a process in memory!

11

Multi-level paging

Lingar Address
31 2 21 12 11 0
| oiRectory | TABLE | orrser |

Fage

L+ B

Page Tabig
T

Page Directory
— O

O_,J_._a

ord

How does multi-level paging! help keep the size of the page tables
small?

ILinux uses three-level paging.
12

Questions?

