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Do you know your latency numbers?

Latency Comparison Numbers
--------------------------
L1 cache reference 0.5 ns
Branch mispredict 5   ns
L2 cache reference 7   ns             14x L1
Mutex lock/unlock                            25   ns
Main memory reference 100   ns             200x 
L1
Compress 1K bytes with Zippy              3,000   ns
Send 1K bytes over 1 Gbps network        10,000   ns  0.01ms
Read 4K randomly from SSD*              150,000   ns  0.15ms 300000xL1 
Read 1 MB sequentially from memory      250,000   ns    0.25 ms
Round trip within same datacenter       500,000   ns    0.5  ms
Read 1 MB sequentially from SSD*      1,000,000   ns    1    ms 4X 
memory
Disk seek                            10,000,000   ns   10    ms 20x 
datacenter roundtrip
Read 1 MB sequentially from disk     20,000,000   ns   20    ms 80x 
memory, 20X SSD
Send packet CA->Netherlands->CA     150,000,000   ns  150    ms
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Can we keep everything in memory?

Life would be great if we didn’t have to
pay 0.15ms to access disk. Let’s keep
everything in memory!
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Problem 1: The Jump Issue

What do the following mean?
Browser: jmp 1000
Fortnight: jmp 1000
space

A work around: static relocation
When loading at adr 0x7000, add
0x7000 to every address in the
executable code!

• Slow loading

• Programs need to define what is
relocatable and what is not.
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Problem 2: The Protection Issue

Writes external to my memory
Email’s address offsets can range from 0
to 0x1000.
Email writes to address offset 0x1001!
space

A work around: address space &
base+bound
space

Virtual Address

Base Bound

Physical Address

+

<=
Fault

Yes
No
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Problem 3: More processes than can fit in memory!

A work around: Swapping
Bring in entire process from disk, run it then put it back on disk
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Problem 4: A process grows!

Work arounds?
Give more than needed!
space
Problem 5: What if a process just
needs more memory than your
entire RAM?
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The seeds of virtual memory

What do you want from your virtual memory system?

1. Simplicity: Processes get a flat linear address space. Access
addresses from 0 to 232 or 0 to 264 depending on architecture!

2. Flexibility or Deception: Processes need to move in and out of
memory with partial parts in memory and other parts on disk.
Satisfy processes that require more memory than you have!

3. Efficiency: 80/20 rule. Most of what you need is already on
memory. Occasionally, you will go to disk to get the rest!
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The seeds of virtual memory

Virtual Address MMU Physical Address

ptg

321Page Tables

a single static array, their size on even 32-bit architectures would be enormous. Linux uses 
three levels of page tables even on architectures that do not support three levels in hard-
ware. (For example, some hardware uses only two levels or implements a hash in hard-
ware.) Using three levels is a sort of “greatest common denominator”—architectures with 
a less complicated implementation can simplify the kernel page tables as needed with 
compiler optimizations.

The top-level page table is the page global directory (PGD), which consists of an array 
of pgd_t types. On most architectures, the pgd_t type is an unsigned long.The entries 
in the PGD point to entries in the second-level directory, the PMD.

The second-level page table is the page middle directory (PMD), which is an array of
pmd_t types.The entries in the PMD point to entries in the PTE. 

The final level is called simply the page table and consists of page table entries of type
pte_t. Page table entries point to physical pages.

In most architectures, page table lookups are handled (at least to some degree) by hard-
ware. In normal operation, hardware can handle much of the responsibility of using the 
page tables.The kernel must set things up, however, in such a way that the hardware is 
happy and can do its thing. Figure 15.1 diagrams the flow of a virtual to physical address 
lookup using page tables.

Each process has its own page tables (threads share them, of course).The pgd field of 
the memory descriptor points to the process’s page global directory. Manipulating and 
traversing page tables requires the page_table_lock, which is located inside the associ-
ated memory descriptor.

Page table data structures are quite architecture-dependent and thus are defined in
<asm/page.h>.

Because nearly every access of a page in virtual memory must be resolved to its corre-
sponding address in physical memory, the performance of the page tables is very critical. 
Unfortunately, looking up all these addresses in memory can be done only so quickly.To 
facilitate this, most processors implement a translation lookaside buffer, or simply TLB,
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Figure 15.1 Virtual-to-physical address lookup.

  From the Library of Wow! eBook

Mapping Tables

The kernel’s job is set up these mapping tables for each process.
Hardware handles the mapping table lookup on every virtual
address operation.

But what is the right granularity of mapping? a byte-to-byte? a
whole segment?

Most operating systems opt for paging. Each virtual address maps to
a page address and an offset within it. The mapping tables are
called page tables.
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How does paging work?

The simplified view of paging

> Error

Physical Page # Offset
Physical Address

Virtual Page # Offset
Virtual Address

page table size

Physical Page # …
Physical Page # …

…

Physical Page # …

An 
index 

into the
Page 
Table
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What are the right numbers for?

Page size: On 32-bits, this is typically 4KB. Can also be 8KB on
64-bit architectures.

Bits in the offset: If a page is 4KB we have 4096 unique bytes we
should be able to address so 212 = 4096. 12 bits.

Page table size: If you want to support flat addresses on 32- or 64-
bit machines then you need to map every virtual address to a
physical address. On 32-bit: 32− 12 = 20, the table should have
220 entries. With 252 entries on 64-bit with 4KB pages, you can’t fit
the page table for a process in memory!
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Multi-level paging

Understanding the Linux Kernel 

45 

In Intel processors, paging is enabled by setting the PG flag of the cr0 register. When PG = 0, 
linear addresses are interpreted as physical addresses. 

2.4.1 Regular Paging 

Starting with the i80386, the paging unit of Intel processors handles 4 KB pages. The 32 bits 
of a linear address are divided into three fields: 

Directory  

The most significant 10 bits 

Table  

The intermediate 10 bits 

Offset  

The least significant 12 bits 

The translation of linear addresses is accomplished in two steps, each based on a type of 
translation table. The first translation table is called Page Directory and the second is called 
Page Table. 

The physical address of the Page Directory in use is stored in the cr3 processor register. The 
Directory field within the linear address determines the entry in the Page Directory that points 
to the proper Page Table. The address's Table field, in turn, determines the entry in the Page 
Table that contains the physical address of the page frame containing the page. The Offset 
field determines the relative position within the page frame (see Figure 2-5). Since it is 12 bits 
long, each page consists of 4096 bytes of data. 

Figure 2-5. Paging by Intel 80x86 processors 

 

How does multi-level paging1 help keep the size of the page tables
small?

1Linux uses three-level paging.
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Questions?
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