Virtual Memory & Paging

Azza Abouzied

From Last Class: Why “Virtual” Memory?

Can we keep everything in memory?

Kernel
0x9000
Fortnite
OX6000 Life would be great if we didn’t have to
E— pay 0.15ms to access disk. Let's keep
0x5000 everything in memory!
0x2500
Browser
0x0000

Problem 1: The Jump Issue

Kernel

Fortnite

Email

Browser

0x9000

0x6000

0x5000

0x2500

0x0000

What do the following mean?
Browser: jmp 1000
Fortnight: jmp 1000

Problem 1: The Jump Issue

Kemel What do the following mean?
0x9000 Browser: jmp 1000
Fortnight: jmp 1000
Fortnite
A work around: static relocation
e When loading at adr 0x7000, add
Email e 0x7000 to every address in the
executable code!
e Slow loading
0x2500
e Programs need to define what is
Browser i
relocatable and what is not.
0x0000

Problem 2: The Protection Issue

Writes external to my memory

Kernel Email’s address offsets can range from 0

0x9000 to 0x1000.
Email writes to address offset Ox1001!

Fortnite

0x6000
Email

0x5000
0x2500

Browser

0x0000

Problem 2: The Protection Issue

Writes external to my memory

Kernel Email’s address offsets can range from 0
0x9000 to 0x1000.
Email writes to address offset Ox1001!
Fortnite
A work around: address space &
0x6000 base+bound
Email
0x5000
‘ Virtual Address ‘
2
0x2500 %
No
Browser Fault

Yes
)
Physical Address ‘

0x0000 ‘

Problem 3: More processes than can fit in memory!

A work around: Swapping
Bring in entire process from disk, run it then put it back on disk

Time —
Cc Cc Cc C Cc
B B B B
A
A A A
D D D

Operating Operating Operating Operating Operating Operating Operating
system system system system system system system

@ (b) (© (d) (e Ul (@)

Problem 4: A process grows!

B-Stack
______ : o > Room for growth
B-Data Work arounds?
B-Program Give more than needed!
A'S;ac“ ‘ Problem 5: What if a process just
iiiiii {_____| jRoom for growth needs more memory than your
A-Data entire RAM?
A-Program
Operating
system

The seeds of virtual memory

What do you want from your virtual memory system?

1. Simplicity: Processes get a flat linear address space. Access
addresses from 0 to 232 or O to 24 depending on architecture!

2. Flexibility or Deception: Processes need to move in and out of
memory with partial parts in memory and other parts on disk.
Satisfy processes that require more memory than you have!

3. Efficiency: 80/20 rule. Most of what you need is already on
memory. Occasionally, you will go to disk to get the rest!

The seeds of virtual memory

Mapping Tables

Virtual Address |—> —| Physical Address

The kernel's job is set up these mapping tables for each process.
Hardware handles the mapping table lookup on every virtual
address operation.

But what is the right granularity of mapping? a byte-to-byte? a
whole segment?

Most operating systems opt for paging. Each virtual address maps to
a page address and an offset within it. The mapping tables are
called page tables.

How does paging work?

The simplified view of paging

Virtual Address

| Virtual Page # | Offset | page table size|
An t

index ‘@—* Error
into the Physical Page #
Page » Physical Page #
Table

Physical Page # ‘

—>‘ Physical Page # Offset

Physical Address

10

What are the right numbers for?

Page size: On 32-bits, this is typically 4KB. Can also be 8KB on
64-bit architectures.

Bits in the offset: If a page is 4KB we have 4096 unique bytes we
should be able to address so 212 = 4096. 12 bits.

Page table size: If you want to support flat addresses on 32- or 64-
bit machines then you need to map every virtual address to a
physical address. On 32-bit: 32 — 12 = 20, the table should have
220 entries. With 252 entries on 64-bit with 4KB pages, you can't fit
the page table for a process in memory!

11

Multi-level paging

Lingar Address
kil 2N 12 1 1]
DIRECTORY TABLE OFFSET

Page

1+ 3

Page Table
——

Page Directory
N

[+ oy

ol —]1 T

o3

How does multi-level paging help keep the size of the page tables
small?

12

Multi-level paging

Linear Adodress

| cosaom | mipLEDik | TABLE | orrser |
Page
Page Table ‘}’
—
Page Middie
Directory

——

FPage Global

Dirgctory r \

s ™~ 0_.

O

crd
i I G

Linux uses three-level paging. How does it help keep the size of the
page tables small?

13

Back to Basics: How a user process gets memory?

Basic rules

1. Process requests for memory are not urgent.

2. The kernel defers allocating dynamic memory.

3. The kernel must catch all addressing errors of a user process.
When a user process asks for memory, it doesn’t get additional page
frames; instead, it gets the right to use a new range of linear

addresses, which become part of its address space. This interval is
called a memory region (area).

14

Back to Basics: When do we get new memory regions?

1. On process creation. Not all executable code needs to be loaded
right away

2. Same process loads a new program: old memory regions
released, new ones assigned.

3. On memory mapping a file: mmap()

4. On pushing data to the user mode stack until the stack is full
and that memory region needs to be expanded.

5. On creating a shared memory region to share data with other
processes.

6. On expanding the heap through malloc()

15

Back to Basics: Memory Layout of Memory Regions

368 <

Kernel space
User code CANNOT read from nor write to these addresses,
doing so results in a Segmentation Fault

Stack (grows down)

Memory Mapping Segment
File mappings (including dynamic libraries) and anonymous
mappings. Example: /1ib/libc.so

7

Heap

BSS segment
Uninitialized static variables, filled with zeros.
Example: static char *userName;

Data segment
Static variables initialized by the programmer
Example: static char *gonzo = "God’s own prototype”;

©xcapeares

+ Random stack offset

TASK_SIZE

»~ RLIMIT_STACK (e.g., 8MB)

}.- Random mmap offset

program break
brk

start_brk
\

= Random brk offset

end_data

start_data

Text segment (ELF)
Stores the binary image of the process (e.g., /bin/gonzo)

end_code

]

What does this mean for multi-level paging? Entire ranges of virtual
addresses are not used and thus top-level pointers in the directory

table point to NULL!

16

The Page Tables

1. What is the size of a page frame?

icialedaies Physical Address 2. What is the size of page table in bytes? Why?
4>1 Dir ‘Tab\e‘offset‘ ‘ PPN ‘Offset‘
) L)

I 3. How many entries are in each page table?

————> | PPN _|Flags]

0w } 4. What is the size of each page table entry?
1

1023

R I Fege Teble 5. Assume a process uses all virtual addresses,
how much space is used by the page tables?

Page Directory

B
B

6. How many bits for the physical page number?

7. What happens with the remaining bits?

17

31

1211109876 543210

Physical Page Number

A
Vv
L

DA

Page table and page directory
entries are identical except for
the D bit.

Ccw
DTUWP
=
w
U
—WT
CD
A
D
AVL

The Page Table Entry on x86

- Present

- Writable

- User

- 1=Write-through, 0=Write-back
- Cache Disabled

- Accessed

- Dirty (0 in page directory)

- Available for system use

x86 paging hardware understands flags in bits O to 8; bits 9 to 11
can be used by the operating system.

18

The Page Fault

When a page is accessed in a way that does not match its protection
bits or the present bit is 0, paging hardware triggers a fault.

When the present bit is 0, the kernel has full control on how to use
the remaining bits of the PTE.

19

Demand paging

When is Present bit = 07

1. The page was never accessed by the process. The PTE has Os.

e the missing page maps to a file — load from file.

e itis an annonymous region — allocate a free page.

2. The page was already accessed by the process, but its content is
temporarily saved on disk.

e the PTE is not filled with zeros — It was swapped out, swap it
back in

e the PTE stores the location on the disk of the swapped-out page.

20

Swapping

The kernel uses swap space on disk as an extension of RAM.,
e |tis transparent to the programmer.
e Expands address space available to a process.
e Expands space available to load processes.

Generally not a good thing! We want to keep swapping to a
minimum. Why?

Do not confuse “standard swapping” with this “swapping” or
“paging”.

22

Key Swapping Design Questions

1. Which kind of page to swap out?
2. How to distribute pages in the swap areas?
3. How to select the page to be swapped out?

4. When to perform page swap-out?

23

What to swap out?

Swapping applies only to:

1. Pages belonging to an anonymous memory region (for instance,
a User Mode stack, heap) of a process

2. Modified pages belonging to a private (file) memory mapping of
a process

3. Pages belonging to a shared memory region used for
inter-process communication.

Why not memory-mapped files in general?

24

How to distribute pages in the swap areas?

e A swap area is broken into slots, the PPN tells us which slot.
31 87 21 0
Page slot index Area number |l] Ul

e Store pages in contiguous slots to reduce disk seeks.

e Multiple swap areas across several storage devices.

25

How to select the page to be swapped out?

e Steal pages from the process having the largest number of
pages in RAM.

e Typically swap out least recently used pages
When to perform page swap-out?
e When free memory falls below a pre-defined threshold.

Page Replacement Policies!

26

Questions?

