
Virtual Memory & Paging

Azza Abouzied



From Last Class: Why “Virtual” Memory?



Can we keep everything in memory?

Life would be great if we didn’t have to
pay 0.15ms to access disk. Let’s keep
everything in memory!

2



Problem 1: The Jump Issue

What do the following mean?
Browser: jmp 1000
Fortnight: jmp 1000
space

A work around: static relocation
When loading at adr 0x7000, add
0x7000 to every address in the
executable code!

• Slow loading

• Programs need to define what is
relocatable and what is not.

3



Problem 1: The Jump Issue

What do the following mean?
Browser: jmp 1000
Fortnight: jmp 1000
space
A work around: static relocation
When loading at adr 0x7000, add
0x7000 to every address in the
executable code!

• Slow loading

• Programs need to define what is
relocatable and what is not.

3



Problem 2: The Protection Issue

Writes external to my memory
Email’s address offsets can range from 0
to 0x1000.
Email writes to address offset 0x1001!
space

A work around: address space &
base+bound
space

Virtual Address

Base Bound

Physical Address

+

<=
Fault

Yes
No

4



Problem 2: The Protection Issue

Writes external to my memory
Email’s address offsets can range from 0
to 0x1000.
Email writes to address offset 0x1001!
space
A work around: address space &
base+bound
space

Virtual Address

Base Bound

Physical Address

+

<=
Fault

Yes
No

4



Problem 3: More processes than can fit in memory!

A work around: Swapping
Bring in entire process from disk, run it then put it back on disk

5



Problem 4: A process grows!

Work arounds?
Give more than needed!
space
Problem 5: What if a process just
needs more memory than your
entire RAM?

6



The seeds of virtual memory

What do you want from your virtual memory system?

1. Simplicity: Processes get a flat linear address space. Access
addresses from 0 to 232 or 0 to 264 depending on architecture!

2. Flexibility or Deception: Processes need to move in and out of
memory with partial parts in memory and other parts on disk.
Satisfy processes that require more memory than you have!

3. Efficiency: 80/20 rule. Most of what you need is already on
memory. Occasionally, you will go to disk to get the rest!

7



The seeds of virtual memory

Virtual Address MMU Physical Address

ptg

321Page Tables

a single static array, their size on even 32-bit architectures would be enormous. Linux uses 
three levels of page tables even on architectures that do not support three levels in hard-
ware. (For example, some hardware uses only two levels or implements a hash in hard-
ware.) Using three levels is a sort of “greatest common denominator”—architectures with 
a less complicated implementation can simplify the kernel page tables as needed with 
compiler optimizations.

The top-level page table is the page global directory (PGD), which consists of an array 
of pgd_t types. On most architectures, the pgd_t type is an unsigned long.The entries 
in the PGD point to entries in the second-level directory, the PMD.

The second-level page table is the page middle directory (PMD), which is an array of
pmd_t types.The entries in the PMD point to entries in the PTE. 

The final level is called simply the page table and consists of page table entries of type
pte_t. Page table entries point to physical pages.

In most architectures, page table lookups are handled (at least to some degree) by hard-
ware. In normal operation, hardware can handle much of the responsibility of using the 
page tables.The kernel must set things up, however, in such a way that the hardware is 
happy and can do its thing. Figure 15.1 diagrams the flow of a virtual to physical address 
lookup using page tables.

Each process has its own page tables (threads share them, of course).The pgd field of 
the memory descriptor points to the process’s page global directory. Manipulating and 
traversing page tables requires the page_table_lock, which is located inside the associ-
ated memory descriptor.

Page table data structures are quite architecture-dependent and thus are defined in
<asm/page.h>.

Because nearly every access of a page in virtual memory must be resolved to its corre-
sponding address in physical memory, the performance of the page tables is very critical. 
Unfortunately, looking up all these addresses in memory can be done only so quickly.To 
facilitate this, most processors implement a translation lookaside buffer, or simply TLB,

struct mm_struct

PGD

pgd_t

pgd_t

pgd_t

pgd_t

pgd_t

pgd_t

pgd_t

pgd_t

pgd_t

PMD

pmd_t

pmd_t

pmd_t

pmd_t

pmd_t

pmd_t

pmd_t

pmd_t

pmd_t

PTE

pte_t

pte_t

pte_t

pte_t

pte_t

pte_t

pte_t

pte_t

pet_t

struct page

physical page

Figure 15.1 Virtual-to-physical address lookup.

  From the Library of Wow! eBook

Mapping Tables

The kernel’s job is set up these mapping tables for each process.
Hardware handles the mapping table lookup on every virtual
address operation.

But what is the right granularity of mapping? a byte-to-byte? a
whole segment?

Most operating systems opt for paging. Each virtual address maps to
a page address and an offset within it. The mapping tables are
called page tables.

8



Paging



How does paging work?

The simplified view of paging

> Error

Physical Page # Offset
Physical Address

Virtual Page # Offset
Virtual Address

page table size

Physical Page # …
Physical Page # …

…

Physical Page # …

An 
index 

into the
Page 
Table

10



What are the right numbers for?

Page size: On 32-bits, this is typically 4KB. Can also be 8KB on
64-bit architectures.

Bits in the offset: If a page is 4KB we have 4096 unique bytes we
should be able to address so 212 = 4096. 12 bits.

Page table size: If you want to support flat addresses on 32- or 64-
bit machines then you need to map every virtual address to a
physical address. On 32-bit: 32− 12 = 20, the table should have
220 entries. With 252 entries on 64-bit with 4KB pages, you can’t fit
the page table for a process in memory!

11



Multi-level paging

Understanding the Linux Kernel 

45 

In Intel processors, paging is enabled by setting the PG flag of the cr0 register. When PG = 0, 
linear addresses are interpreted as physical addresses. 

2.4.1 Regular Paging 

Starting with the i80386, the paging unit of Intel processors handles 4 KB pages. The 32 bits 
of a linear address are divided into three fields: 

Directory  

The most significant 10 bits 

Table  

The intermediate 10 bits 

Offset  

The least significant 12 bits 

The translation of linear addresses is accomplished in two steps, each based on a type of 
translation table. The first translation table is called Page Directory and the second is called 
Page Table. 

The physical address of the Page Directory in use is stored in the cr3 processor register. The 
Directory field within the linear address determines the entry in the Page Directory that points 
to the proper Page Table. The address's Table field, in turn, determines the entry in the Page 
Table that contains the physical address of the page frame containing the page. The Offset 
field determines the relative position within the page frame (see Figure 2-5). Since it is 12 bits 
long, each page consists of 4096 bytes of data. 

Figure 2-5. Paging by Intel 80x86 processors 

 

How does multi-level paging help keep the size of the page tables
small?

12



Multi-level paging
Understanding the Linux Kernel 

53 

Figure 2-9. The Linux paging model 

 

Linux handling of processes relies heavily on paging. In fact, the automatic translation of 
linear addresses into physical ones makes the following design objectives feasible: 

• Assign a different physical address space to each process, thus ensuring an efficient 
protection against addressing errors. 

• Distinguish pages, that is, groups of data, from page frames, that is, physical addresses 
in main memory. This allows the same page to be stored in a page frame, then saved to 
disk, and later reloaded in a different page frame. This is the basic ingredient of the 
virtual memory mechanism (see Chapter 16). 

As we shall see in Chapter 7, each process has its own Page Global Directory and its own set 
of Page Tables. When a process switching occurs (see Section 3.2 in Chapter 3), Linux saves 
in a TSS segment the contents of the cr3 control register and loads from another TSS segment 
a new value into cr3. Thus, when the new process resumes its execution on the CPU, the 
paging unit refers to the correct set of page tables. 

What happens when this three-level paging model is applied to the Pentium, which uses only 
two types of page tables? Linux essentially eliminates the Page Middle Directory field by 
saying that it contains zero bits. However, the position of the Page Middle Directory in the 
sequence of pointers is kept so that the same code can work on 32-bit and 64-bit architectures. 
The kernel keeps a position for the Page Middle Directory by setting the number of entries in 
it to 1 and mapping this single entry into the proper entry of the Page Global Directory. 

Mapping logical to linear addresses now becomes a mechanical task, although somewhat 
complex. The next few sections of this chapter are thus a rather tedious list of functions and 
macros that retrieve information the kernel needs to find addresses and manage the tables; 
most of the functions are one or two lines long. You may want to just skim these sections 
now, but it is useful to know the role of these functions and macros because you'll see them 
often in discussions in subsequent chapters. 

 

Linux uses three-level paging. How does it help keep the size of the
page tables small?

13



Back to Basics: How a user process gets memory?

Basic rules

1. Process requests for memory are not urgent.

2. The kernel defers allocating dynamic memory.

3. The kernel must catch all addressing errors of a user process.

When a user process asks for memory, it doesn’t get additional page
frames; instead, it gets the right to use a new range of linear
addresses, which become part of its address space. This interval is
called a memory region (area).

14



Back to Basics: When do we get new memory regions?

1. On process creation. Not all executable code needs to be loaded
right away

2. Same process loads a new program: old memory regions
released, new ones assigned.

3. Onmemory mapping a file: mmap()

4. On pushing data to the user mode stack until the stack is full
and that memory region needs to be expanded.

5. On creating a shared memory region to share data with other
processes.

6. On expanding the heap through malloc()

15



Back to Basics: Memory Layout of Memory Regions

What does this mean for multi-level paging? Entire ranges of virtual
addresses are not used and thus top-level pointers in the directory

table point to NULL!
16



The Page Tables

Physical Page Number
A
V
L

D

6

A

5

C

D

4

W

T

3

U

2

W

1

P

078910111231

P

W

U

WT

CD

A

D

AVL

- Present

- Writable

- User

- 1=Write-through, 0=Write-back

- Cache Disabled

- Accessed

- Dirty (0 in page directory)

- Available for system use

20

VIrtual address Physical Address
1210

Dir Table Offset

10

0

1

1023

PPN Flags

20 12

12

PPN Offset

PPN Flags

0

1

1023

20 12

Page Table

CR3

Page table and page directory

entries are identical except for 

the D bit.

Figure 2-1. x86 page table hardware.

whether instructions are allowed to issue writes to the page; if not set, only reads and
instruction fetches are allowed. PTE_U controls whether user programs are allowed to
use the page; if clear, only the kernel is allowed to use the page. Figure 2-1 shows how
it all works. The flags and all other page hardware related structures are defined in
mmu.h (0200).

A few notes about terms. Physical memory refers to storage cells in DRAM. A
byte of physical memory has an address, called a physical address. Instructions use
only virtual addresses, which the paging hardware translates to physical addresses, and
then sends to the DRAM hardware to read or write storage. At this level of discussion
there is no such thing as virtual memory, only virtual addresses.

Process address space

The page table created by entry has enough mappings to allow the kernel’s C
code to start running. However, main immediately changes to a new page table by
calling kvmalloc (1757), because kernel has a more elaborate plan for describing pro-
cess address spaces.

Each process has a separate page table, and xv6 tells the page table hardware to
switch page tables when xv6 switches between processes. As shown in Figure 2-2, a
process’s user memory starts at virtual address zero and can grow up to KERNBASE, al-
lowing a process to address up to 2 GB of memory. When a process asks xv6 for
more memory, xv6 first finds free physical pages to provide the storage, and then adds

DRAFT as of August 28, 2012 26 http://pdos.csail.mit.edu/6.828/xv6/

PTE_U+code
kvmalloc+code

1. What is the size of a page frame?

2. What is the size of page table in bytes? Why?

3. How many entries are in each page table?

4. What is the size of each page table entry?

5. Assume a process uses all virtual addresses,
how much space is used by the page tables?

6. How many bits for the physical page number?

7. What happens with the remaining bits?

17



The Page Table Entry on x86

x86 paging hardware understands flags in bits 0 to 8; bits 9 to 11
can be used by the operating system.

18



The Page Fault

When a page is accessed in a way that does not match its protection
bits or the present bit is 0, paging hardware triggers a fault.

When the present bit is 0, the kernel has full control on how to use
the remaining bits of the PTE.

19



Demand paging

When is Present bit = 0?

1. The page was never accessed by the process. The PTE has 0s.
• the missing page maps to a file→ load from file.

• it is an annonymous region→ allocate a free page.

2. The page was already accessed by the process, but its content is
temporarily saved on disk.
• the PTE is not filled with zeros→ It was swapped out, swap it

back in

• the PTE stores the location on the disk of the swapped-out page.

20



Swapping (Paging)



Swapping

The kernel uses swap space on disk as an extension of RAM.

• It is transparent to the programmer.

• Expands address space available to a process.

• Expands space available to load processes.

Generally not a good thing! We want to keep swapping to a
minimum. Why?

Do not confuse “standard swapping” with this “swapping” or
“paging”.

22



Key Swapping Design Questions

1. Which kind of page to swap out?

2. How to distribute pages in the swap areas?

3. How to select the page to be swapped out?

4. When to perform page swap-out?

23



What to swap out?

Swapping applies only to:

1. Pages belonging to an anonymous memory region (for instance,
a User Mode stack, heap) of a process

2. Modified pages belonging to a private (file) memory mapping of
a process

3. Pages belonging to a shared memory region used for
inter-process communication.

Why not memory-mapped files in general?

24



How to distribute pages in the swap areas?

• A swap area is broken into slots, the PPN tells us which slot.

Understanding the Linux Kernel 

424 

16.2.2 Swapped-out Page Identifier 

A swapped-out page is uniquely identified quite simply by specifying the index of the swap 
area in the swap_info array and the page slot index inside the swap area. Since the first page 
(with index 0) of the swap area is reserved for the swap_header union discussed earlier, the 
first useful page slot has index 1. The format of a swapped-out page identifier is illustrated in 
Figure 16-3. 

Figure 16-3. Swapped-out page identifier 

 

The SWP_ENTRY(type,offset) macro constructs a swapped-out page identifier from the 
swap area index type and the page slot index offset. Conversely, the SWP_TYPE and 
SWP_OFFSET macros extract from a swapped-out page identifier the swap area index and the 
page slot index, respectively. 

When a page is swapped out, its identifier is inserted as the page's entry into the Page Table 
so the page can be found again when needed. Notice that the least-significant bit of such an 
identifier, which corresponds to the Present flag, is always cleared to denote the fact that the 
page is not currently in RAM. However, at least 1 of the 30 most-significant bits has to be set 
because no page is ever stored in slot 0. It is thus possible to identify, from the value of a Page 
Table entry, three different cases: 

• Null entry: the page does not belong to the process address space. 
• First 30 most-significant bits not all equal to 0, last 2 bits equal to 0: the page is 

currently swapped out. 
• Least-significant bit equal to 1: the page is contained in RAM. 

Since a page may belong to the address spaces of several processes (see Section 16.3), it may 
be swapped out from the address space of one process and still remain in main memory; 
therefore, it is possible to swap out the same page several times. A page is physically swapped 
out and stored just once, of course, but each subsequent attempt to swap it out increments the 
swap_map counter. 

The swap_duplicate( ) function is invoked while trying to swap out an already swapped-
out page. It just verifies that the swapped-out page identifier passed as its parameter is valid 
and increments the corresponding swap_map counter. More precisely, it performs the 
following actions: 

1. Uses the SWP_TYPE and SWP_OFFSET macros to extract from the parameter the partition 
number type and the page slot index offset. 

2. Checks whether one of the following error conditions occurs: 
a. type is greater than nr_swapfiles. 
b. The SWP_USED flag in swap_info[type].flags is cleared, indicating that the 

swap area is not active. 
c. offset is greater than swap_info[type].max. 

• Store pages in contiguous slots to reduce disk seeks.

• Multiple swap areas across several storage devices.

25



How to select the page to be swapped out?

• Steal pages from the process having the largest number of
pages in RAM.

• Typically swap out least recently used pages

When to perform page swap-out?

• When free memory falls below a pre-defined threshold.

Page Replacement Policies!

26



Questions?

27


