
Virtual Memory: Page Replacement Algorithms

Azza Abouzied



From Last Class: Swapping



Swapping

Kernel uses some space on disk as an extension of RAM. It is
transparent to the programmer.

• Expands address space available to a process;

• Expands space available to load processes.

Generally not a good thing! We want to keep swapping to a
minimum. Why?
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What to swap out?

Swapping applies only to:

1. Pages belonging to an anonymous memory region (for instance,
a User Mode stack, heap) of a process

2. Modified pages belonging to a private (file) memory mapping of
a process

3. Pages belonging to a shared memory region used for
inter-process communication.
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How to distribute pages in the swap areas?

• A swap area is broken into slots, the PPN tells us which slot.

Understanding the Linux Kernel 
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16.2.2 Swapped-out Page Identifier 

A swapped-out page is uniquely identified quite simply by specifying the index of the swap 
area in the swap_info array and the page slot index inside the swap area. Since the first page 
(with index 0) of the swap area is reserved for the swap_header union discussed earlier, the 
first useful page slot has index 1. The format of a swapped-out page identifier is illustrated in 
Figure 16-3. 

Figure 16-3. Swapped-out page identifier 

 

The SWP_ENTRY(type,offset) macro constructs a swapped-out page identifier from the 
swap area index type and the page slot index offset. Conversely, the SWP_TYPE and 
SWP_OFFSET macros extract from a swapped-out page identifier the swap area index and the 
page slot index, respectively. 

When a page is swapped out, its identifier is inserted as the page's entry into the Page Table 
so the page can be found again when needed. Notice that the least-significant bit of such an 
identifier, which corresponds to the Present flag, is always cleared to denote the fact that the 
page is not currently in RAM. However, at least 1 of the 30 most-significant bits has to be set 
because no page is ever stored in slot 0. It is thus possible to identify, from the value of a Page 
Table entry, three different cases: 

• Null entry: the page does not belong to the process address space. 
• First 30 most-significant bits not all equal to 0, last 2 bits equal to 0: the page is 

currently swapped out. 
• Least-significant bit equal to 1: the page is contained in RAM. 

Since a page may belong to the address spaces of several processes (see Section 16.3), it may 
be swapped out from the address space of one process and still remain in main memory; 
therefore, it is possible to swap out the same page several times. A page is physically swapped 
out and stored just once, of course, but each subsequent attempt to swap it out increments the 
swap_map counter. 

The swap_duplicate( ) function is invoked while trying to swap out an already swapped-
out page. It just verifies that the swapped-out page identifier passed as its parameter is valid 
and increments the corresponding swap_map counter. More precisely, it performs the 
following actions: 

1. Uses the SWP_TYPE and SWP_OFFSET macros to extract from the parameter the partition 
number type and the page slot index offset. 

2. Checks whether one of the following error conditions occurs: 
a. type is greater than nr_swapfiles. 
b. The SWP_USED flag in swap_info[type].flags is cleared, indicating that the 

swap area is not active. 
c. offset is greater than swap_info[type].max. 

• Store pages in contiguous slots to reduce disk seeks.

• Multiple swap areas across several storage devices.
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How to select the page to be swapped out?

• Steal pages from the process having the largest number of
pages in RAM.

• Typically swap out least recently used pages
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When to perform page swap-out?

• When free memory falls below a pre-defined threshold.

• Background swapping kernel thread.
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Page Replacement Algorithms



Context

Page replacement occurs at a per-process level1. The kernel decides,
which processes can have their pages swapped out/replaced.

How to pick the victim process?

• The Linux-way? Survivors on a desert island

• The Working-set way?

Now for each process, your goal is to swap-out/free the page that is
least likely to be accessed immediately.

1In linux, page tables are per process. Global page tables also exist where a PTE
also contains a process tag.
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The Optimal Algorithm

Replace the page that we won’t use for a while!

Assume an Oracle that sees into the future

Reference String:
1 2 3 4 1 2 5 1 2 3 4 5

If we have 4 page frames in memory, how many faults?
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The Optimal Algorithm

Reference String: 1 2 3 4 1 2 5 1 2 3 4 5

Before Request After Fault?
1 1 1 1 1 1 1 1 1 Yes
1 1 1 1 2 1 2 1 1 Yes
1 2 1 1 3 1 2 3 1 Yes
1 2 3 1 4 1 2 3 4 Yes

1 2 3 4 1 1 2 3 4
1 2 3 4 2 1 2 3 4
1 2 3 4 5 1 2 5 4 Yes
1 2 5 4 1 1 2 5 4
1 2 5 4 2 1 2 5 4
1 2 5 4 3 1 3 5 4 Yes
1 3 5 4 4 1 3 5 4
1 3 5 4 5 1 3 5 4
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The FIFO Algorithm

Queue up pages, throw out oldest page.
Reference String: 1 2 3 4 1 2 5 1 2 3 4 5

Before Request After Fault?
1 1 1 1 1 1 1 1 1 Yes
1 1 1 1 2 1 2 1 1 Yes
1 2 1 1 3 1 2 3 1 Yes
1 2 3 1 4 1 2 3 4 Yes
1 2 3 4 1 1 2 3 4
1 2 3 4 2 1 2 3 4

1 2 3 4 5 5 2 3 4 Yes
5 2 3 4 1 5 1 3 4 Yes
5 1 3 4 2 5 1 2 4 Yes
5 1 2 4 3 5 1 2 3 Yes
5 1 2 3 4 4 1 2 3 Yes
4 1 2 3 5 4 5 2 3 Yes
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The FIFO Algorithm

Queue up pages, throw out oldest page.
Reference String: 1 2 3 4 1 2 5 1 2 3 4 5
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The FIFO Algorithm

Queue up pages, throw out oldest page.
Reference String: 1 2 3 4 1 2 5 1 2 3 4 5

Before Request After Fault?
1 1 1 1 1 1 1 1 1 Yes
1 1 1 1 2 1 2 1 1 Yes
1 2 1 1 3 1 2 3 1 Yes
1 2 3 1 4 1 2 3 4 Yes
1 2 3 4 1 1 2 3 4
1 2 3 4 2 1 2 3 4
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5 1 3 4 2 5 1 2 4 Yes
5 1 2 4 3 5 1 2 3 Yes
5 1 2 3 4 4 1 2 3 Yes
4 1 2 3 5 4 5 2 3 Yes
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Belady’s Anomaly

What if we only have 3 page frames in memory?

Before Request After Fault?
1 1 1 1 1 1 1 Yes
1 1 1 2 1 2 1 Yes
1 2 1 3 1 2 3 Yes
1 2 3 4 4 2 3 Yes
4 2 3 1 4 1 3 Yes
4 1 3 2 4 1 2 Yes
4 1 2 5 5 1 2 Yes
5 1 2 1 5 1 2
5 1 2 2 5 1 2
5 1 2 3 5 3 2 Yes
5 3 2 4 5 3 4 Yes
5 3 4 5 5 3 4
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Clock Algorithm

A second-chance algorithm over FIFO:

1. It checks if the Accessed bit is set.

2. This bet is set by the hardware on page access.

3. If set, it clears it and moves on to the next frame.

4. If clear, it replaces the page.

If all pages were recently accessed, it degenerates into FIFO.

Hard to assess its benefit with toy reference strings. Relies on the
frequency with which a swapping thread is called, the emergency of
finding a free frame and how often pages do get accessed.

The clock name comes from using a hand that points to the last
examined page in a FIFO circular queue.
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The Dirty Bit

Enhanced Clock/Second Chance:

1. Basic strategy prefers flushing unreferenced pages to
referenced ones

2. Use dirty bit to flush clean, unreferenced pages over dirty
referenced ones.

Why is this an improvement?
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Least Recently Used

Replace the page that has not been used the longest. Need a
timestamp for each page

Pros:

1. Best approximation of Optimal

2. Based on the best predictor for tomorrow’s weather is today’s
weather.

3. Most heavily used now are most heavily used in the near future

Cons:

1. Requires hardware support to supply time accessed on every
page access!

2. Storing a timestamp in every page entry is 4 bytes of wasted
space.
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Least Recently Used Approximation

Instead of a full 4-byte timestamp, use a smaller counter.

• Counter incremented after every instruction

• After every memory reference we up the counter in the PTE of
the page just accessed.

• Gives us least recently used estimate

A 1-bit counter is just the accessed flag: was the page referenced
since the last request for a free page frame?

n bits gives us 2n options.
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Aging

In not-frequently-used, we increment a counter if a page was
referenced at least once in the last time space: e.g. 20ms.

No way to differentiate between a page that was heavily used in the
last 20msec vs. one that was only touched once. Both are equal.
One can be unfairly evicted!

Aging is a variant of the NFU algorithm.

At time t = 0
Accessed: []

1 0000 0000

2 0000 0000

3 0000 0000

4 0000 0000

5 0000 0000

counters 
maintained by OS

t = 2
[12]

1 1000 0000

2 1000 0000

3 0000 0000

4 0000 0000

5 0000 0000

t = 4
[12]

1 1010 0000

2 1010 0000

3 0100 0000

4 0100 0000

5 0000 0000

t = 3
[34]

1 0100 0000

2 0100 0000

3 1000 0000

4 1000 0000

5 0000 0000

t = 5
[51]

1 1101 0000

2 0101 0000

3 0010 0000

4 0010 0000

5 1000 0000

t = 6
[23]

1 0110 1000

2 1010 1000

3 1001 0000

4 0010 0000

5 0100 0000

t = 7
[45]

1 0011 0100

2 0101 0100

3 0100 1000

4 1001 0000

5 1010 0000

pages in memory 
are green

first page 5 was evicted to 
put 4 in, then page 1 to put 
5 back in
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What pages to keep in? The Working Set



What pages to keep in?

Number of Pages in Memory
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Figure: Diminishing marginal returns: the 80/20 rule.
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What do we know about program behavior?

for(i = 0; i < 100; i++)
for(j = 0; j < 100; j++)
x[i] = x[i]*j;

Temporal Locality

• The instructions to read and update x[i] are temporally local.

• The memory reference to x[i], i is also temporally local.

Spatial Locality

• After referring x[1], we expect to refer to x[2].

• Neighboring data items are likely to be accessed next.

• Neighboring code is likely to be accessed next.
20



Working set

The working set of a process is the set of pages it currently needs in
memory to function well: e.g. without page faults. The set evolves
with time.

Denning, 1968 definition: WS(t,∆) of a process at time t is the
collection of pages referenced by the process during the process
time interval (t−∆, t).

WS is a concept not an algorithm and we can try to design
page-replacement algorithms that do not swap out the WS.
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What is happening here?

Degree of Multiprogramming
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If your CPU is underutilized, you’d expect that adding more
processes should increase CPU utilization.
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Thrashing

Degree of Multiprogramming
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n Thrashing

Thrashing: Processes spend more time paging than executing!
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Solution 1: Isolation

Isolate the effects of thrashing

If one process starts to thrash, it should not steal frames from other
processes and cause them to trash.

But...

1. Increases fault service time because the paging device’s swap-in
queue is full of the thrashing process’s requests.

2. So non-thrashing process will still suffer
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Solution 2: Working Set Model

If you cannot provide a process with its working set, then suspend
the process entirely until you can. Schedule it later!
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Can we determine the right # of pages to allocate?

1. Use Page fault rates to estimate of the size of the working set.

Number of frames
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ge

-fa
ul
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lower bound

upper bound
increase number of allocated frames

decrease number of allocated frames

2. Track previous executions of a process to determine its working
set and pre-page.
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How to write good programs?

Assume each page can hold only 64 integers.

int i, j;
int[64][64] data;

for( j = 0; j < 64; j++){
for(i = 0;
i < 64; i++){
data[i][ j] = 0;

}
}

int i, j;
int[64][64] data;

for(i = 0; i < 64; i++){
for( j = 0;
j < 64; j++){
data[i][ j] = 0;

}
}
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Hardware Optimizations: TLB



The cost of a memory access

What happens when we access memory movl 0xdeadbeef, %edi

We first have to look up the physical address of 0xdeadbeef.

Recall:

1. L1 Cache: 0.5ns; L2 Cache: 7-10ns

2. Memory reference: 100ns Disk seek + read: 10-20ms

Assume two-level page table (not in the L2) cache then we need to:

1. look up index in first level: 100ns

2. look up index in the second level : 100ns

3. retrieve the actual data at 0xdeadbeef: 100ns

Each memory access incurs an additional 200ns!
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The Transaction Look-aside Buffer

Can we do better?

1. TLB is a Fully associative cache (all entries searched in parallel)

2. Small: 16-64 entries. Why?

3. Can achieve 99% hit ratio. How?

Cache hit: address translation does not require an extra memory
reference

Cache miss: must walk the page tables to translate.
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Translation Lookaside Buffer
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What happens on a cache miss?

Hardware-TLB: (x86 architecture). The hardware walks the page
table and updates an entry into the TLB by evicting another entry
usually by using LRU.

Software-TLB: Traps to the kernel and the kernel decides how to
walk the page tables and update the TLB entry. Allows for greater
flexibility in terms of page table structure, simpler hardware, but
comes at a performance cost!
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What happens on a context switch?

TLB must be purged/flushed (using a special hardware instruction)
unless entries are tagged with a process ID; otherwise, the new
process will use the old process’s TLB entries and reference its page
frames!
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What is the cost of a cache miss?

Suppose the hit rate is 80%, accessing the TLB is on the order of
accessing an L2 cache (10-20ns).

Again assume 2-level pages:

0.8× (20ns) + 0.2× (200ns+ 20ns) = 16ns+ 44ns = 60ns

The first term: There is an 80% chance we only need to spend 20ns
to obtain the translation.

The second term: In the 20% chance we get a TLB miss, we need to
traverse two pointers to get the translation and then populate the
entry in the TLB.

Compare only 60ns with 200ns of lookup without the TLB!
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Small RAM



Inverted Page Tables

With 1GB of RAM, there is no

point representing every possible

virtual address, we have a small

fixed size of available page frames

anyway.

1. Table occupies a fixed fraction of
memory. The size is proportional
to physical memory, not the
virtual address space.

2. The inverted page table is a
global structure. It stores
reverse mappings for all
processes. Each entry has a tag
with the task id and the virtual
address for each page.

3. hash (task id, page number):
match, translate the address. If
not, use collision resolution
technique (rehash, search, linear
probing) and search again.
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Complexities of Page Tables



Synchronization

1. Several operations occurring at the same time: swapping in,
eviction, DMA (hardware transferring pages without CPU
intervention), ...

2. Free frame no longer free but write operation hasn’t started yet.

3. Processes sharing the same page

4. Processes dying before their swap-out/in completes

Several data structure locks and page-frame-level locks to lock/pin
individual page frames as well as global structures during updates.
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Zero-pages?

Zeroing pages: Initialize a page with 0’s before allocating to a
process.
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Copy-on-write

Two process share most of the initial state but diverge over time

For example,

1. parent & child in a Unix fork()
Don’t allocate duplicate copies of a page; instead make page
read-only, point to same page, on write→ page fault→ this
copies the page!

2. Processes that start by requesting large blocks of zeros in
address space
big global arrays; sbrk() a call to increase heap space; Hand out
thousands of pointers to the same empty page and allocate real
page only when we need to.
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Preferential Treatment for Kernel Pages

Kernel memory is allocated from a free-memory pool different than
what is used for user-processes. Why?

1. Minimize waste: no internal fragmentation as much as possible.
Kernel typically resides within a small space of physical memory.

2. Contiguous physical memory:
• some devices would like to side-step the VM system entirely

• performance: to make nonphysically contiguous pages contiguous
in the virtual address space, must specifically set up the page
table entries: results in TLB thrashing!

3. Kernel buffers: special data structures for devices to copy data
directly to without VM intervention.

Free lists: Allocating and freeing data structures is one of the most
common operations inside any kernel. A free list contains a block of
available, already allocated, data structures.
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Sharing with Page Tables



Shared Pages

PTEs from two processes share the same physical pages.
Use cases?

Easier said than done:

1. What happens when one process destroyed?

2. How do we page in/page out shared pages? (All PTEs need to
be updated)

3. Pin and Unpin shared pages

4. What represents the working set for each process?
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Swapping out shared pages
Understanding the Linux Kernel 

431 

Figure 16-4. The role of the swap cache 

 

The swap cache is implemented by the page cache data structures and procedures described in 

Section 14.2 in Chapter 14. Recall that the page cache includes pages associated with regular 

files and that a hash table allows the algorithm to quickly derive the address of a page 

descriptor from the address of an inode object and an offset inside the file. Pages in the swap 

cache are stored as any other page in the page cache, with the following special treatment: 

• The inode field of the page descriptor stores the address of a fictitious inode object 

contained in the swapper_inode variable. 

• The offset field stores the swapped-out page identifier associated with the page. 

• The PG_swap_cache flag in the flags field is set. 

Moreover, when the page is put in the swap cache, both the count field of the page descriptor 

and the page slot usage counters are incremented, since the swap cache makes use of both the 

page frame and the page slot. 

The kernel makes use of several functions to handle the swap cache; they are based mainly on 

those discussed in Section 14.2 in Chapter 14. We'll show later how these relatively low-level 

functions are invoked by higher-level functions to swap pages in and out as needed. 

The functions that handle the swap cache are: 
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Questions?
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