
Storage Devices: HDD, SDD, NVM & RAID

Azza Abouzied

Storage Devices

The Limiting Factor

Why are disks not fast enough?

1. At 7200 RPM, a full rotation is 8ms and expected rotation time
is 4ms.

2. The seek cost is 4-10 ms.

3. Our transfer bandwidth is 40-125MB/s

Transfer 1KB

Seek + Rotational Delay + Transfer

4ms + 4ms + 1KB/125MB/s = 8ms + 0.007ms = 8.007ms

Our effective transfer rate is 1KB/8.007ms = 125KB/s = 1/1000 of
125MB/s!

2

How can we maximize performance?

Can we get an effective transfer rate that is 9/10 of disk bandwidth
(bw) instead of 1/1000?

Amortization!

bw× 9
10

=
size

size/bw+ seek+ rotation

size = 9 ∗ bw× (seek+ rotation)

size = 9 ∗ 125MB/s× (4ms+ 4ms) = 9MB

3

Disk Scheduling for Amortization

FIFO

Assume you have the following track/cylinder requests:
98, 183, 37, 122, 14, 124, 65, 67

Pros:

1. Fairness: Blocks arrive in the
order requested

Cons:

1. Long seeks

2. Wild swings

How many tracks are visited?
640 tracks!

15

FIFO (FCFS) order

 Method
  First come first serve

 Pros
  Fairness among requests
  In the order applications

expect
 Cons

  Arrival may be on random
spots on the disk (long
seeks)

  Wild swing can happen

0 199

98, 183, 37, 122, 14, 124, 65, 67

53

5

Shortest Seek Time First (SSTF)

Pick track closest on disk to the current head position.

Pros:

1. Minimize seek time

Cons:

1. Starvation

2. Ignore rotation**

How many tracks are visited?
236 tracks

16

SSTF (Shortest Seek Time First)

  Method
  Pick the one closest on disk
  Rotational delay is in

calculation

  Pros
  Try to minimize seek time

  Cons
  Starvation

  Question
  Is SSTF optimal?
  Can we avoid the starvation?

0 199

98, 183, 37, 122, 14, 124, 65, 67
(65, 67, 37, 14, 98, 122, 124, 183)

53

6

Elevator

Pick the closest in the direction of head (So no back and forth head
movement)

Pros:

1. No Starvation

Cons:

1. Can still do better!

How many tracks are visited?
230 tracks

17

Elevator (SCAN)

 Method
  Take the closest request in

the direction of travel
  Real implementations do not

go to the end (called LOOK)
 Pros

  Bounded time for each
request

 Cons
  Request at the other end will

take a while

0 199

98, 183, 37, 122, 14, 124, 65, 67
(37, 14, 65, 67, 98, 122, 124, 183)

53

7

Elevator

Like elevator, except once it reaches the end it jumps to the other
end. Always moves in one direction.

Pros:

1. Uniform Service time

How many tracks are visited?
187 (a jump is not counted as a
scan!) An optimization where
you jump to the furthest track
request instead of track 0 lowers
the cost to 157 tracks.

18

C-SCAN (Circular SCAN)

 Method
  Like SCAN
  But, wrap around
  Real implementation doesn’t

go to the end (C-LOOK)
 Pros

  Uniform service time

 Cons
  Do nothing on the return

0 199

98, 183, 37, 122, 14, 124, 65, 67
(65, 67, 98, 122, 124, 183, 14, 37)

53

8

The Linux IO Schedulers

The Linus Elevator - Linux 2.4

• maintains on IO queue for all requests roughly sorted by sector

• merges new requests with existing nearby requests in the queue

• or inserts request within the queue based on sector location

• if a request has aged, then new requests regardless of sector
location are placed at the tail

How does this affect latency? Can it cause starvation?
Writes Starve ReadsWhy is writes-starve-reads so problematic?

9

The Linux IO Schedulers

The Deadline IO Scheduler
1. Read latency is more important because

reads are synchronous — the process blocks
— while writes can occur asynchronously.

2. Reads are dependent on the previous read

3. Whether you read or write, you still need to
read the metadata related to a file.

4. If each read request is individually starved,
the total delay compounds and can become
enormous.

5. Associate deadlines with reads (500 ms),
writes (5 seconds).

6. Each request goes to two queues: sorted and
read/write.

ptg

301I/O Schedulers

Note that reducing request starvation comes at a cost to global throughput. Even the
Linus Elevator makes this compromise, albeit in a much milder manner.The Linus Eleva-
tor could provide better overall throughput (via a greater minimization of seeks) if it
always inserted requests into the queue sectorwise and never checked for old requests and
reverted to insertion at the tail of the queue.Although minimizing seeks is important,
indefinite starvation is not good either.The Deadline I/O scheduler, therefore, works
harder to limit starvation while still providing good global throughput. Make no mistake:
It is a tough act to provide request fairness, yet maximize global throughput.

In the Deadline I/O scheduler, each request is associated with an expiration time. By
default, the expiration time is 500 milliseconds in the future for read requests and 5 sec-
onds in the future for write requests.The Deadline I/O scheduler operates similarly to
the Linus Elevator in that it maintains a request queue sorted by physical location on disk.
It calls this queue the sorted queue.When a new request is submitted to the sorted queue,
the Deadline I/O scheduler performs merging and insertion like the Linus Elevator.4 The
Deadline I/O scheduler also, however, inserts the request into a second queue that
depends on the type of request. Read requests are sorted into a special read FIFO queue,
and write requests are inserted into a special write FIFO queue.Although the normal
queue is sorted by on-disk sector, these queues are kept FIFO. (Effectively, they are sorted
by time.) Consequently, new requests are always added to the tail of the queue. Under
normal operation, the Deadline I/O scheduler pulls requests from the head of the sorted
queue into the dispatch queue.The dispatch queue is then fed to the disk drive.This
results in minimal seeks.

If the request at the head of either the write FIFO queue or the read FIFO queue
expires (that is, if the current time becomes greater than the expiration time associated
with the request), the Deadline I/O scheduler then begins servicing requests from the
FIFO queue. In this manner, the Deadline I/O scheduler attempts to ensure that no
request is outstanding longer than its expiration time. See Figure 14.3.

Note that the Deadline I/O scheduler does not make any strict guarantees over
request latency. It is capable, however, of generally committing requests on or before their

4 Performing front merging is optional in the Deadline I/O scheduler, however. It is not always worth

the trouble because many workloads have few requests that can be front merged.

disk

dispatch queue

Read FIFO queue

Write FIFO queue

Sorted queue

Figure 14.3 The three queues of the Deadline I/O scheduler.

 From the Library of Wow! eBook
10

The Linux IO Schedulers

Anticipatory IO Scheduler

1. Disk throughput goes down if you keep shuttling from read
requests to an ongoing write.

2. After servicing read requests, wait and do nothing!

3. If nothing comes in, then process the write, else you might get a
nearby read request so service it.

Complete Fair Queuing IO Scheduling

1. A queue per process.

2. Service queues round-robin and service x requests from each
queue at a time.

Noop Scheduler does nothing! Works for random access devices like
SSDs.

11

SSD

SSD drives

NAND Flash as high capacity as HDD

Block Structure

1. Each block has 32 or 64 Pages

2. Each Page is 512+16 or 2048+64 Bytes

Speed (Tends to be asymmetrical)

1. Read Page: 10µs

2. Write Page: 20-200µs

3. Erase Block: 1-2ms

Erase sets the whole block to 1. We actually write 0s.
13

How do we write to flash memory?

The Flash Translation Layer: Many problems can be solved by
adding a layer of indirection. The FTL makes flash access similar to
disk access.

1. Map virtual page address to
physical page address

2. Write performance
impacted by the availability
of free/erased blocks to
write to.

3. Erases unused blocks

4. Performs wear-leveling.

14

Why do we need wear-leveling on flash?

The life span of a page depends on the type of flash.

1. ≈ 50-100 thousand writes/page for SLC. It is faster, more
reliable, and less dense but at least twice as expensive than
MLC

2. ≈ 15-60 thousand writes/page for the higher density, slower
MLC.

With desktop applications, if you do some basic computations, it
would take about hundreds of years to wear out your flash drive
completely (the drive will naturally die within 10 years). With
enterprise applications, you can wear out a drive in as little as 6
months!

15

The future of storage devices

NVM

Non-volatile memory is becoming more and more likely with
potential impact on how we design file systems and operating
systems in general.

Despite advances, we still don’t have universal memory yet, i.e.
storage that performs as fast as caches or main memory, but we are
pushing latency numbers down.

What is the key impact of faster storage?

17

The new latency numbers

Memory Latency Bandwidth Capacity / IOPS

Register 0.25ns
L1-L3 cache 1-11 ns L3: 45 MB
DRAM 62ns 102GBps 6TB
NVRAM DIMM 620ns 60GBps 24TB
1-sided RDMA 1.4µs 100GbE ≈ 700K IOPS
RPC 2.4µs 100GbE ≈ 400K IOPS
NVRAM NVMe 12µs 6GBps 16TB/disk
SSD NVMe 90µs 5GBps 16TB/disk,
SAS/SATA SSD 110µs 1.5GBps 16TB/disk
SAS/SATA HDD 10ms 1.5GBps 10TB/disk

From Adrian Coyler’s blog: the morning paper

18

https://blog.acolyer.org/2016/01/22/all-change-please/

Storage is a hot research topic

How many atoms do you need to store a bit?

12 atoms – IBM’s nanotechnology storage device. Need a machine
the size of a washing machine to write a bit. The BBC article, 2012

Using DNA for archival storage?

102

104

106

108

1010

1970 1980 1990 2000 2010

Year

P
ro

d
u
ct

iv
ity

Transistors on Chip

Reading DNA

Writing DNA

Figure 1. Carlson curves [4]: trends in DNA synthesis and
sequencing technology compared to Moore’s Law. DNA
productivity is measured in nucleotides per person per day.
Recent growth in sequencing technology eclipses Moore.

Flash
HDD
Tape

DNA Storage

~5 yrs

centuries

Access Time
ms

10s ms
minutes
10s hrs

Durability

~5 yrs
~15-30 yrs

Figure 2. DNA storage as the bottom level of the storage
hierarchy

Sequencing and synthesis improvement projections. To-
day, neither the performance nor the cost of DNA synthesis
and sequencing is viable for data storage purposes. However,
they have historically seen exponential improvements. Their
cost reductions and throughput improvements have been com-
pared to Moore’s Law in Carlson’s Curves [4], as shown in
Figure 1. It shows that sequencing productivity has been
growing faster than Moore’s Law. Important biotechnology
applications such as genomics and the development of smart
drugs are expected to continue driving these improvements,
eventually making data storage a viable application.

3. A DNA Storage System

We envision DNA storage as the very last level of a deep
storage hierarchy, providing very dense and durable archival
storage with access times of many hours to days (Figure 2).
DNA synthesis and sequencing can be made arbitrarily
parallel, making the necessary read and write bandwidths
attainable. We now describe our proposal of a system for
DNA-based storage with random access support.

3.1 Overview

A DNA storage system consists of a DNA synthesizer that
encodes the data to be stored in DNA, a storage container
with compartments that store pools of DNA that map to a
volume, and a DNA sequencer that reads DNA sequences
and converts them back into digital data. Figure 3 shows an
overview of the integrated system.

DNA Synthesizer

PCR
Thermocycler

DNA Sequencer

DNA storage library
Data

IN

Data
OUT

DNA
pool

Figure 3. Overview of a DNA storage system.

The basic unit of DNA storage is a DNA strand that is
roughly 100-200 nucleotides long, capable of storing 50-100
bits total. Therefore, a typical data object maps to a very large
number of DNA strands. The DNA strands will be stored in
“pools” that have stochastic spatial organization and do not
permit structured addressing, unlike electronic storage media.
Therefore, it is necessary to embed the address itself into the
data stored in a strand. This way, after sequencing, one can
reassemble the original data value. We discuss digital data
representation in DNA in Section 4.

3.2 Interface and Addressing

A storage system needs a way to assign identification tags
to data objects so they can be retrieved later. We choose a
simple key-value architecture, where a put(key, value)

operation associates value with key, and a get(key) op-
eration retrieves the value assigned to key. To implement
a key-value interface in a DNA storage system, we need:
(1) a function that maps a key to the DNA pool (in the li-
brary) where the strands that contain data reside; and (2) a
mechanism to selectively retrieve only desired portions of a
pool (i.e, random access), since the DNA container will likely
store significantly more data than the desired object.

We implement random access by mapping a key to a pair
of PCR primers. At write time, those primers are added to the
strands. At read time, those same primers are used in PCR
to amplify only the strands with the desired keys. Because
the resulting pool will have a much higher concentration of
the desired strands, a sample from that pool is very likely to
contain all of those strands.

Separating the DNA strands into a collection of pools
(Figure 3) balances a trade-off between storage density,
reliability, and performance. The most dense way to store
data would be to have all strands in a single pool, but this
arrangement sacrifices reliability for two reasons. First, a
single pool requires many different primers to distinguish all
keys, which increases the chance that two primers react poorly
to each other. Second, a single pool reduces the likelihood that
a random sample drawn during the read process will contain
all the desired data. On the other hand, using a separate pool
per key sacrifices density excessively. We therefore use a
library of reasonably-sized pools, and use random access
within each pool.

P o l y a ;
01010000 01101111 01101100 01111001 01100001 00111011 Binary data

 12011 02110 02101 222111 01112 222021
Base 3

Huffman code

 GCGAG TGAGT ATCGA TGCTCT AGAGC ATGTGA
DNA

nucleotides

(a) Translating binary data to DNA nucleotides via a Huffman code.

G TCA

0

1

2

T AGC

A CTG

C GAT

Previous Nucleotide

Te
rn

ar
y

Di
gi

t
To

 E
nc

od
e

(b) A rotating encoding to nucleotides avoids homopolymers (repe-
titions of the same nucleotide), which are error-prone.

Figure 5. Encoding a stream of binary data as a stream of
nucleotides. A Huffman code translates binary to ternary
digits, and a rotating encoding translates ternary digits to
nucleotides.

Because base 3 is not a multiple of base 2, mapping
directly between the bases would be inefficient: 6 ternary
digits (36 = 729) can store 9 bits of data (29 = 512), but waste
217 possible states. Instead, we use a Huffman code [13] that
maps each binary byte to either 5 or 6 ternary digits. For
example, the Huffman code maps the binary string 01100001
to the base-3 string 01112. The rotating nucleotide encoding
maps this string to the DNA sequence CTCTG. The code maps
more common ASCII characters to 5 digit strings, offering
minor compression benefits for textual data, though the effect
on overall storage density is insignificant.

4.2 Data Format

Another practical issue with representing data in DNA is that
current synthesis technology does not scale beyond sequences
of low hundreds of nucleotides. Data beyond the hundreds
of bits therefore cannot be synthesized as a single strand of
DNA. In addition, DNA pools do not offer spatial isolation,
and so a pool contains data for many different keys which
are irrelevant to a single read operation. Isolating only the
molecules of interest is non-trivial, and so existing DNA
storage techniques generally sequence the entire solution,
which incurs significant cost and time overheads.

To overcome these two challenges, we organize data in
DNA in a similar fashion to Goldman et al. [10], as shown
in Figure 6. Segmenting the nucleotide representation into
blocks, which we synthesize as separate strands, allows
storage of large values. Tagging those strands with identifying
primers allows the read process to isolate molecules of
interest and so perform random access. Below we describe
these designs in detail.

Payload. The string of nucleotides representing the data to
be stored is broken into data blocks, whose length depends
on the desired strand length and the additional overheads

TCTACGCTCGAGTGATACGAATGCGTCGTACTACGTCGTGTACGTA…

Output Strand

Input Nucleotides

TCTACGCTCGAGTGATACGAA ATCTACGTCTACGATC CCAGTATCA

AddressPayloadPrimer
Target

Primer
Target

S S
5’ 3’

Figure 6. An overview of the DNA data encoding format.
After translating to nucleotides, the stream is divided into
strands. Each strand contains a payload from the stream,
together with addressing information to identify the strand
and primer targets necessary for PCR and sequencing.

of the format. To aid decoding, two sense nucleotides (“S”
in Figure 6) indicate whether the strand has been reverse
complemented (this is done to avoid certain pathological
cases).

Address. Each data block is augmented with addressing
information to identify its location in the input data string.
The address space is in two parts. The high part of the address
identifies the key a block is associated with. The low part of
the address indexes the block within the value associated with
that key. The combined address is padded to a fixed length
and converted to nucleotides as described above. A parity
nucleotide is added for basic error detection.

Primers. To each end of the strand, we attach primer se-
quences. These sequences serve as a “foothold” for the PCR
process, and allow the PCR to selectively amplify only those
strands with a chosen primer sequence.

Random Access. We exploit primer sequences to provide
random access: by assigning different primers to different
strands, we can perform sequencing on only a selected group
of strands. Existing work on DNA storage uses a single primer
sequence for all strands. While this design suffices for data
recovery, it is inefficient: the entire pool (i.e., the strands for
every key) must be sequenced to recover one value.

To provide random access, we instead design a mapping
from keys to unique primer sequences. All strands for a
particular object share a common primer, and different strands
with the same primer are distinguished by their different
addresses.

Primers allow random access via a polymerase chain
reaction (PCR), which produces many copies of a piece of
DNA in a solution. By controlling the sequences used as
primers for PCR, we can dictate which strands in the solution
are amplified. To read a particular key’s value from the
solution, we simply perform a PCR process using that key’s
primer, which amplifies the selected strands. The sequencing
process then reads only those strands, rather than the entire
pool. The amplification means sequencing can be faster and
cheaper, because the probability of recovering the desired
object is higher.

Note that not all adapters and primers have the same behav-
ior or effectiveness during PCR. Also, the actual sequences
affect the PCR cycle temperatures. Discussing adapter and

Published in ASPLOS’16

19

http://www.bbc.com/news/technology-16543497
https://homes.cs.washington.edu/~luisceze/publications/dnastorage-asplos16.pdf

RAID

RAID is neither of these

21

Redundant Array of Independent Disks

22

Redundant Array of Independent Disks

Parity computation is

P =
⊕
i

Di = D0 ⊕ D1 ⊕ D2 ⊕ ... ⊕ Dn−1

Raid-4 has a dedicated parity disk, while Raid-5 stripes the parity
disk across devices. What benefit do we get from this striping?

23

Performance and Reliability

Consider RAID 0, 1 and 5 and 8 equivalent disks

1. How much usable storage does the system receive?

2. If we only do reads without verification. What is the expected
throughput if each disk does 100 reads/second?

3. If we only do writes. What is the throughput now?

4. What is the min number of disk that may fail before data is lost?

5. What is the minimum number of disks that must fail to
guarantee data loss?

24

Questions?

25

	Storage Devices
	Disk Scheduling for Amortization
	SSD
	The future of storage devices
	RAID

