Storage Devices: HDD, SDD, NVM & RAID

Azza Abouzied

Storage Devices

The Limiting Factor

Why are disks not fast enough?

1. At 7200 RPM, a full rotation is 8ms and expected rotation time
is 4ms.

2. The seek cost is 4-10 ms.

3. Our transfer bandwidth is 40-125MB/s
Transfer 1KB
Seek + Rotational Delay + Transfer
4ms + 4ms + 1KB/125MB/s = 8ms + 0.007ms = 8.007ms

Our effective transfer rate is 1KB/8.007ms = 125KB/s = 1/1000 of
125MB/s!

How can we maximize performance?

Can we get an effective transfer rate that is 9/10 of disk bandwidth
(bw) instead of 1/10007?

Amortization!

_ size
10 size/bw + seek + rotation

bw x

size = 9 x bw x (seek + rotation)

size = 9 x 126MB/s x (4ms + 4ms) = 9MB

Disk Scheduling for Amortization

FIFO

Assume you have the following track/cylinder requests:
98, 183, 37, 122, 14, 124, 65, 67

0 5‘3 199

Pros:

1. Fairness: Blocks arrive in the
order requested

Cons:

1. Long seeks

2. Wild swings

How many tracks are visited?
640 tracks!

98, 183,37, 122, 14, 124, 65, 67

Shortest Seek Time First (SSTF)

Pick track closest on disk to the current head position.
0 5‘3 199

Pros:

1. Minimize seek time
Cons:

1. Starvation

2. Ignore rotation** \\
How many tracks are visited?
236 tracks

98, 183, 37, 122, 14, 124, 65, 67
(65, 67,37, 14,98, 122, 124, 183)

Elevator

Pick the closest in the direction of head (So no back and forth head

movement)

Pros:

1. No Starvation
Cons:

1. Can still do better!

How many tracks are visited?
230 tracks

0 5‘3

199

/

—

98, 183, 37, 122, 14, 124, 65, 67
(37, 14, 65, 67, 98, 122, 124, 183)

Like elevator, except once it reaches the end it jumps to the other
end. Always moves in one direction.

0 5‘3 199

Pros:
1. Uniform Service time

How many tracks are visited?
187 (a jump is not counted as a
scan!) An optimization where
you jump to the furthest track
request instead of track O lowers
the cost to 157 tracks.

98, 183,37, 122, 14, 124, 65, 67
(65, 67,98, 122, 124, 183, 14, 37)

The Linux IO Schedulers

The Linus Elevator - Linux 2.4
e maintains on |O queue for all requests roughly sorted by sector
e merges new requests with existing nearby requests in the queue
e orinserts request within the queue based on sector location

e if a request has aged, then new requests regardless of sector
location are placed at the tail

How does this affect latency? Can it cause starvation?
Writes Starve Reads Why is writes-starve-reads so problematic?

The Linux IO Schedulers

The Deadline 10 Scheduler

1. Read latency is more important because
reads are synchronous — the process blocks
— while writes can occur asynchronously.

2. Reads are dependent on the previous read

3. Whether you read or write, you still need to

read the metadata related to a file. Read FIFO queue dsk
Write FIFO queue dispatch queue
4. If each read request is individually starved, Sorted queue
the total delay compounds and can become
enormous.

5. Associate deadlines with reads (500 ms),
writes (5 seconds).

6. Each request goes to two queues: sorted and
read/write.

10

The Linux IO Schedulers

Anticipatory IO Scheduler

1. Disk throughput goes down if you keep shuttling from read
requests to an ongoing write.

2. After servicing read requests, wait and do nothing!

3. If nothing comes in, then process the write, else you might get a
nearby read request so service it.

Complete Fair Queuing 10 Scheduling
1. A queue per process.

2. Service queues round-robin and service x requests from each
queue at a time.

Noop Scheduler does nothing! Works for random access devices like
SSDs.

11

SSD

SSD drives

NAND Flash as high capacity as HDD

Block Structure

1. Each block has 32 or 64 Pages

2. Each Pageis 512+16 or 2048+64 Bytes
Speed (Tends to be asymmetrical)

1. Read Page: 10us

2. Write Page: 20-200us

3. Erase Block: 1-2ms

Erase sets the whole block to 1. We actually write Os.

13

How do we write to flash memory?

The Flash Translation Layer: Many problems can be solved by
adding a layer of indirection. The FTL makes flash access similar to

disk access.

1. Map virtual page address to [

File Sysiam I

physical page address Rl i A
[Logical pddross
2. Write performance (ram 'i' \ N
impacted by the availability ey m ol
of free/erased blocks to (" Mapping Ta
write to.
Physical
addmas
3. Erases unused blocks L \) |

Campact Flash Sysem

4. Performs wear-leveling.

14

Why do we need wear-leveling on flash?

The life span of a page depends on the type of flash.

1. ~ 50-100 thousand writes/page for SLC. It is faster, more
reliable, and less dense but at least twice as expensive than
MLC

2. ~ 15-60 thousand writes/page for the higher density, slower
MLC.

With desktop applications, if you do some basic computations, it
would take about hundreds of years to wear out your flash drive
completely (the drive will naturally die within 10 years). With
enterprise applications, you can wear out a drive in as little as 6
months!

15

The future of storage devices

NVM

Non-volatile memory is becoming more and more likely with
potential impact on how we design file systems and operating
systems in general.

Despite advances, we still don't have universal memory yet, i.e.
storage that performs as fast as caches or main memory, but we are
pushing latency numbers down.

What is the key impact of faster storage?

17

The new latency numbers

Memory Latency Bandwidth Capacity / IOPS
Register 0.25ns

L1-L3 cache 1-11ns L3: 45 MB
DRAM 62ns 102GBps 6TB
NVRAM DIMM 620ns 60GBps 24TB
1-sided RDMA 1.4us 100GbE ~ 700K I0PS
RPC 2.4us 100GbE ~ 400K IOPS
NVRAM NVMe 12us 6GBps 16TB/disk
SSD NVMe 90us 5GBps 16TB/disk,
SAS/SATA SSD 110us 1.5GBps 16TB/disk
SAS/SATA HDD 10ms 1.5GBps 10TB/disk

From Adrian Coyler’s blog: the morning paper

18

https://blog.acolyer.org/2016/01/22/all-change-please/

Storage is a hot research topic

How many atoms do you need to store a bit?
' (‘ ’ " “

oy
|

12 atoms - IBM’s nanotechnology storage device. Need a machine
the size of a washing machine to write a bit. The BBC article, 2012

Using DNA for archival storage?

Access Time Durability

P o 1 y a 5
01010000|01101111|01101100|01111001|01100001|00111011

HDD 10s ms ~5yrs Base 8
Tape minstes ~15-80yrs Hufiman cods [n2en] ea110] ez1e1] 222111 e1112] 222021]
‘ DNA Storage ‘ 10s hrs centuries 1 PyA ‘ GCGAG‘ TGAGT‘ ATCGA‘ TGCTCT‘ AGAGC‘ ATGTGA‘

Published in ASPLOS’16

19

http://www.bbc.com/news/technology-16543497
https://homes.cs.washington.edu/~luisceze/publications/dnastorage-asplos16.pdf

RAID

RAID is neither of these

THE RAID

—REDEMPTION

e
e

21

RAID O
> >
AL A2
A3 Ad
AS | A6
AT A8
~ ~

Disk O

Disk 1

RAID 1
I
AL (Al
A2 A2
A3 4 KA3
A4 A4
)

Disk 0 Disk 1

Redundant Array of Independent Disks

22

Redundant Array of Independent Disks

RAID 4 RAID 5
= = =l E EEE
eSS e
0000000

Parity computation is

P:eaDi:DO ® Dy Dy & ... @ Dy_q
i

Raid-4 has a dedicated parity disk, while Raid-5 stripes the parity
disk across devices. What benefit do we get from this striping?

23

Performance and Reliability

Consider RAID 0, 1 and 5 and 8 equivalent disks
1. How much usable storage does the system receive?

2. If we only do reads without verification. What is the expected
throughput if each disk does 100 reads/second?

3. If we only do writes. What is the throughput now?
4. What is the min number of disk that may fail before data is lost?

5. What is the minimum number of disks that must fail to
guarantee data loss?

24

Questions?

	Storage Devices
	Disk Scheduling for Amortization
	SSD
	The future of storage devices
	RAID

