
File Systems: The Interface

Azza Abouzied



From Last Class: RAID



Redundant Array of Independent Disks

2



Redundant Array of Independent Disks

Parity computation is

P =
⊕
i

Di = D0 ⊕ D1 ⊕ D2 ⊕ ... ⊕ Dn−1

Raid-4 has a dedicated parity disk, while Raid-5 stripes the parity
disk across devices. What benefit do we get from this striping?

3



On Parity

Note that X⊕ X = 0

So if:
P =

⊕
i

Di = D0 ⊕ D1 ⊕ D2 ⊕ ... ⊕ Dn−1

Then to remove the effect of say D2 from the parity we simply
compute:

P⊕D2

Now we can change D2 to D
′

2 and recompute the new parity as
follows:

P
′
= P⊕D2 ⊕D

′

2

4



Performance and Reliability

Consider Raid 0, 1 and 5 and 8 equivalent disks

1. How much usable storage does the system receive?

2. If we only do reads without verification. What is the expected
throughput if each disk does 100 requests/second?

3. If we only do writes. What is the throughput now if each disk
does 100 requests/second?

4. What is the min number of disks thatmay fail before data is lost?

5. What is the minimum number of disks that must fail to
guarantee data loss?

5



File Systems



Why is Memory not enough?

The main issues:

1. Memory Address Space
• Limited

• Large Hadron Collider produces 15PB (1015 bytes) a day!

2. Memory is volatile
• Survive system crashes and process termination.

• Power failure.

3. Shared data across processes

7



Why not just use block disk drivers?

A nice simple block device interface:

• Read block k

• Write block k

But ...

How to search for information?
How to protect one user’s data from another user?
Free blocks?
How to cache blocks?
Mapping Block size to Page size?

8



Why not just use block disk drivers?

A nice simple block device interface:

• Read block k

• Write block k

But ...

How to search for information?
How to protect one user’s data from another user?
Free blocks?
How to cache blocks?
Mapping Block size to Page size?

9



Need An Abstraction

Files are just an abstraction. They ...

1. represent a logical unit of information

2. are persistent

3. support key operations: create/remove/write/read by processes

4. are managed by the OS … this is the file system

5. are structured

6. have names,

7. have different access modes (sequential/random)

8. have different protection modes

9. have different physical implementations on a block device (e.g. on flash
drives or disk drives)

10



The FS Interface



The Interface vs. The Implementation

Interface (user’s / process’ view)
How to call a file?
What makes a file?
What operations are allowed?

Implementation (file System view)
How to track free storage: linked list of free blocks or a bitmap?
How to layout a file on disk?
How to ensure reliability
Performance, consistency, caching

12



Interface considerations

Design your own interface
Consider

1. Structure: what does the file look like? and in turn what
operations would it support?

2. File Naming: how do you refer to a file?

3. File Typing: how do you encode type? Should you?

4. Block Access: How do you expose the bytes of file?
Sequentially? Directly?

5. Organization: Directories? Links?

6. Hardware Abstraction: Device-based mount points?

7. Special Files: Would you include more than files?

8. Access Control: How do you represent user privileges?

13



Structure

byte 0

byte n
Bag of bytes

Prevalent file structure
Records

Resurfacing as Key-Value Stores

Trees
Moved to the database (B-trees) 

Resurfacing as XML/JSON special systems

14



Naming

MSDOS: 8 alphanumeric characters, case insensitive, with 3
character extension.
Why? Fits nicely in the 16B directory table entry

OpenVMS distributed file system: NODE“accountname password” ::
device : [directory . subdirectory] filename . type ; ver

Unix: 255 arbitrary characters, case sensitive, extensions are just
characters and multiple extensions allowed.

NTFS: Windows NT file system allows Unicode characters:
ϵλληνικα letters.

15



Types in the Metadata

MSDOS: Extensions “.docx”: OS opens relevant application

Unix: Magic numbers: (0x7F)(’E’)(’L’)(’F’)
Header, not centrally administered and outside the control of the File
System

Windows NTFS, Apple HFS:
Fork/Alternate Data Streams
Each file can have a data fork (actual file) and a resource fork
(metadata and how GUI displays the file) and 0+ named forks.
Forks/ADS were the subject of an interesting security problem

16



How do you access the file?

Sequential

• read() //gives you next byte from cursor

• write() //writes at next byte from cursor

Direct

• read(n) //read nth byte

• write(n) //write at byte n

Why is the distinction from an interface perspective weak?

17



How do you organize/find files?

How do you get the file handle?

1. Hash table?

2. Search through a directory structure?
• flat? tree? graph?

• where is the metadata located?

• encode location information in the name?

3. Hybrid hash/directory? What about document locality?

18



How do you organize/find files?

Links as shortcuts

1. Hard link: File reflects information that is contained in multiple
directories.

2. Symbolic/soft link: A link to the exact path name of the file. We
simply follow the path.

Links require some further design considerations:

1. What if a target is deleted?

2. Can a remote symbolic link refer to a local file?

19



Hardware Abstraction & Mount Points

Unixish perspective
mount //lists all mounted partitions
mount /dev/hda2 /media/movies

1. File system is mounted on a mount point

2. Mount point existing directory in an existing file system

3. Mount initializes a new file system with necessary kernel data
structures

4. Operations on mount point redirected to the correct file system

5. The root file system is always special

unmount /media/movies //closes all open files

Windows perspective
C:\blech
No root directory.

20



Special Files

What are these files?
/dev/hda/
/dev/audio/
/dev/console/
/proc

proc has a subdirectory for each running process, e.g. listing open
files, system Information, no actual files, generated on demand

21



Access Control Mechanisms

1. Authentication
Checking identity
Usually seen as login passwords; credit card numbers with security
code and mom’s maiden name; driver’s license

2. Authorization
Is user x allowed to do action y?
Usually check x’s capabilities against a database of rights

3. Enforcement
Trusted party has to enforce access controls
Which party would you trust? Kernel!

22



File Permissions

Most operating systems now support POSIX access control bits
rwx rwx rwx for user, group, all.

You can change them yourself: chmod a+x

Earlier Windows versions did not support POSIX-only file attributes
such as hidden, read-only, ...

23



The interplay of interface and implementation

Access Control Lists
For each resource, indicate which
users are allowed to perform
which operations.

1. Fits with the POSIX model

2. Checking access requires
enumeration

3. With no groups, a generic
read access means all users
need to be on the list.

Capabilities
For each user, indicate which
files they can access.

1. Can only see an object if you
are capable of it

2. Selective revocation of
rights is hard.

3. What happens when the
object is removed?

4. How do you distribute or
share capabilities?

24



Linux VFS



The Linux Virtual File System

A thin interface layer that all processes go through the file system
through.

VFS provides a standard interface to all processes with a unified
image of files with implementation-specific organization aspects
such as the use of index-nodes (inodes).

Different file systems still have to conform to the VFS view and
create inodes even if they don’t exist.

26



Read ahead

A Fast File System for UNIX*
by Marshall Kirk McKusick, William N. Joy, Samuel J. Leffler, Robert
S. Fabry

Analysis and Evolution of Journaling File Systems
by Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau
in USENIX 2005

The Design and Implementation of a Log-Structured File System
by Mendel Rosenblum and John K. Ousterhout
in SOSP 1991

27



Questions?

28


	From Last Class: RAID
	File Systems
	The FS Interface
	Linux VFS

