
File Systems: The Implementation

Azza Abouzied

From Last Class: Interface Decisions

Interface considerations

1. Structure: what does the file look like? and in turn what
operations would it support?

2. File Naming: how do you refer to a file?

3. File Typing: how do you encode type? Should you?

4. Block Access: How do you expose the bytes of file?
Sequentially? Directly?

5. Organization: Directories? Links?

6. Hardware Abstraction: Device-based mount points?

7. Special Files: Would you include more than files?

8. Access Control: How do you represent user privileges?

2

The Implementation

A Collection of ...

On-disk Data Structures:

1. to track free blocks

2. to track blocks that hold a file’s contents

3. to represent the tree of named directories and files

4

Other functions of an FS

1. Crash recovery.

2. Different processes operate on the file system at the same time

1. coordinate access to maintain invariants.

2. provide a measure of consistency

3. Caching.
Accessing a disk is orders of magnitude slower than accessing
memory: maintain an in-memory cache of popular blocks.

5

On Disk Data Structures: Free Blocks

Disk Layout

partitions, with independent file systems on each partition. Sector 0 of the disk is called
the MBR (Master Boot Record) and is used to boot the computer. The end of the MBR
contains the partition table. This table gives the starting and ending addresses of each
partition. One of the partitions in the table is marked as active. When the computer is
booted, the BIOS reads in and executes the MBR. The first thing the MBR program does
is locate the active partition, read in its first block, called the boot block , and execute it.
The program in the boot block loads the operating system contained in that partition. For
uniformity, every partition starts with a boot block, even if it does not contain a bootable
operating system. Besides, it might contain one in the future, so reserving a boot block is
a good idea anyway.

Other than starting with a boot block, the layout of a disk partition varies strongly from
file system to file system. Often the file system will contain some of the items shown in
Fig. 6-11. The first one is the superblock . It contains all the key parameters about the
file system and is read into memory when the computer is booted or the file system is
first touched. Typical information in the superblock includes a magic number to identify
the file system type, the number of blocks in the file system, and other key administrative
information.

Next might come information about free blocks in the file system, for example in the
form of a bitmap or a list of pointers. This might be followed by the i-nodes, an array of
data structures, one per file, telling all about the file. After that might come the root
directory, which contains the top of the file system tree. Finally, the remainder of the
disk typically contains all the other directories and files.

Figure 6-11. A possible file system layout.

7

Free Blocks

Keeping Track of Free Blocks

Once a block size has been chosen, the next issue is how to keep track of free blocks.
Two methods are widely used, as shown in Fig. 6-21. The first one consists of using a
linked list of disk blocks, with each block holding as many free disk block numbers as
will fit. With a 1-KB block and a 32-bit disk block number, each block on the free list
holds the numbers of 255 free blocks. (One slot is needed for the pointer to the next
block). A 16-GB disk needs a free list of maximum 16,794 blocks to hold all 224 disk
block numbers. Often free blocks are used to hold the free list.

Figure 6-21. (a) Storing the free list on a linked list. (b) A bitmap.

The other free space management technique is the bitmap. A disk with n blocks requires
a bitmap with n bits. Free blocks are represented by 1s in the map, allocated blocks by 0s
(or vice versa). A 16-GB disk has 224 1-KB blocks and thus requires 224 bits for the map,
which requires 2048 blocks. It is not surprising that the bitmap requires less space, since
it uses 1 bit per block, versus 32 bits in the linked list model. Only if the disk is nearly
full (i.e., has few free blocks) will the linked list scheme require fewer blocks than the
bitmap. On the other hand, if there are many blocks free, some of them can be borrowed
to hold the free list without any loss of disk capacity.

8

On Disk Data Structures: Blocks of a file

Blocks of a file

Option A: Contiguous Allocation
Each file is a sequence of consecutive blocks. Only need to store first
and last blocks.

Pros & Cons:

1. We need to know file size ahead of time

2. We get fast sequential reads and easy random access

3. Deleting or shrinking files causes fragmentation

4. Hard to grow files

What is this good for?

10

Blocks of a file

Option B: Linked Lists
File header points to first block. Every block points to the next

Pros & Cons:

1. Growth problem resolved but

2. Doesn’t work well for random access

3. Blocks end up with weird sizes (212 − 4 = 4092 bytes)

11

Blocks of a file

Option C: File Allocation Table FAT
Separate linked lists from files

Pros & Cons:

1. If FAT resides in memory
random access is okay

2. Size of FAT depends on disk
size! 20GB disk requires
80MB of RAM for FAT … can
be pageable

Figure 6-14. Linked list allocation using a file allocation table in main memory.

Using this organization, the entire block is available for data. Furthermore, random
access is much easier. Although the chain must still be followed to find a given offset
within the file, the chain is entirely in memory, so it can be followed without making any
disk references. Like the previous method, it is sufficient for the directory entry to keep a
single integer (the starting block number) and still be able to locate all the blocks, no
matter how large the file is.

The primary disadvantage of this method is that the entire table must be in memory all
the time to make it work. With a 20-GB disk and a 1-KB block size, the table needs 20
million entries, one for each of the 20 million disk blocks. Each entry has to be a
minimum of 3 bytes. For speed in lookup, they should be 4 bytes. Thus the table will
take up 60 MB or 80 MB of main memory all the time, depending on whether the system
is optimized for space or time. Conceivably the table could be put in pageable memory,
but it would still occupy a great deal of virtual memory and disk space as well as
generating extra paging traffic.

I-nodes

12

Blocks of a file

Option D: Index Nodes (inodes)
Each file is associated with an inode, which is identified by an integer
number, often referred to as an i-number or inode number and
contains an index (array of pointers) to the blocks of a file.

1. Why is it better than FAT?

2. What is the drawback for short files?

3. What is the drawback for big files?

13

Blocks of a file

Option D: Index Nodes (inodes)
Each file is associated with an inode, which is identified by an integer
number, often referred to as an i-number or inode number and
contains an index (array of pointers) to the blocks of a file.

1. Why is it better than FAT? Don’t need to load inodes for closed
files.

2. What is the drawback for short files? Most inodes will be empty.

3. What is the drawback for big files? Inode size is limited

14

How to get the inode number and contents of a file

ls -i <file/dir> //gets inode number
stat -x <file/dir> //gets the contents of the inode

15

The Unix inode structure

1. 10 direct pointers

2. 11: 1-level indirection

3. 12: 2-level indirection

4. 13: 3-level indirection

5. What is the maximum file size limit
with 1 KB blocks?

1024 ∗ (10+ 1024/4+ (1024/4)2

+(1024/4)3) = 17GB

6. What if we have 8KB blocks?

7. In earlier unix versions, we had a
sneaky problem due to where we
store inodes.

13

Multi-Level Indexed Files (Unix)

  13 Pointers in a header
  10 direct pointers
  11: 1-level indirect
  12: 2-level indirect
  13: 3-level indirect

  Pros & Cons
  In favor of small files
  Can grow
  Limit is 16G and lots of

seek

  What happens to reach
block 23, 5, 340?

1
2

data

data
. . .
11
12
13

data
. . .

. . . data
. . .

. . . data
. . .

. . .

16

What else is an inode?

1. File size

2. Device ID

3. File type

4. Protection bits, setuid (“set user ID upon execution”) and setgid
(“set group ID upon execution”) bits

5. Link count: for hard links to the file

6. UID: file owner

7. GID: group ID of owner

8. Accessed and Modified timestamps of data and inode

9. The pointers

10. What about filename?

17

On Disk Data Structures: directories

Named files/directories

How do we map a filename to an inode?
Directory: Table mapping names to inodes/FAT entries/other
directories

Read a byte from /nyuados/lab5

1. Read inode and first data block of /

2. Then inode and first data block of nyuados

3. Then inode and first data block of lab5

Write to a file

1. Read Inodes of the directories and directory file

2. Read/create the inode of the file

3. Write back the directory and the file

How to minimize all these IOs?
19

What happens when you open a file?

#include <stdio.h>
#include <errno.h>
int main (void) {
FILE *fp;
fp = fopen (”test.txt”,”w”);
if (fp == NULL) {
printf (”File not created, errno = %d\n”, errno);
return 1;
}
...
fclose (fp);
return 0;
}

You can check the file descriptors with ls -l /proc/PID/fd

20

File Descriptors

1. Each PCB has a pointer to a file descriptor table.

2. These index into a system-wide file table: a table of all files.
You can see all opened files with lsof -u user. The table records
the access mode for each file.

3. The file table indexes into a third table: the inode table that
describes the actual underlying files.

21

The Original Unix Layout

The UNIX physical disk layout

The features:

1. Block size was 512 bytes: why such a small size?

2. Inodes on outermost cylinder

3. Data block inside

4. Linked List for Free blocks

The issues

1. Large index. Why?

2. Fixed possible number of files. Why?

3. Inodes far from data blocks. Do we always read data blocks
when we read inodes?

4. Inodes for a directory not close together. What does this hurt?

5. Sequential access hurt: poor bandwidth 20KB/s. Why?
23

Questions?

24

	From Last Class: Interface Decisions
	The Implementation
	On Disk Data Structures: Free Blocks
	On Disk Data Structures: Blocks of a file
	On Disk Data Structures: directories
	The Original Unix Layout

