File Systems: The Implementation

Azza Abouzied

From Last Class: Interface Decisions

Interface considerations

1. Structure: what does the file look like? and in turn what
operations would it support?

2. File Naming: how do you refer to a file?

3. File Typing: how do you encode type? Should you?

e

Block Access: How do you expose the bytes of file?
Sequentially? Directly?

Organization: Directories? Links?
Hardware Abstraction: Device-based mount points?

Special Files: Would you include more than files?

© N o O

Access Control: How do you represent user privileges?

The Implementation

A Collection of ...

On-disk Data Structures:

1. to track free blocks
2. to track blocks that hold a file’s contents

3. to represent the tree of named directories and files

Other functions of an FS

1. Crash recovery.

2. Different processes operate on the file system at the same time

1. coordinate access to maintain invariants.
2. provide a measure of consistency
3. Caching.

Accessing a disk is orders of magnitude slower than accessing
memory: maintain an in-memory cache of popular blocks.

On Disk Data Structures: Free Blocks

Disk Layout

Entire disk

I Panitiorﬁilable ‘/-‘// Disk pfrlitlonl\\“ |

Boot block | Super block | Free space mgmt l-nodes Root dir Files and directories

Free Blocks

42 e 230 o~ 86 1001101101101100
136 162 234 0110110111110111
210 612 897 1010110110110110
a7 342 422 0110110110111011
H“ 214 140 1110110111011
63 160 223 1101101010001111
21 664 223 0000111011010111
48 216 160 1011101101011
262 320 126 1100100011101111
310 180 142 0111011101110111
516 / 482 -/ 141 1101111101110111
A 1-KB disk block can hold 256 A bitmap

32-bit disk block numbers

On Disk Data Structures: Blocks of a file

Blocks of a file

Option A: Contiguous Allocation
Each file is a sequence of consecutive blocks. Only need to store first
and last blocks.

Pros & Cons:

1. We need to
2. We get fast sequential reads and easy random access
3. Deleting or shrinking files causes

4.

What is this good for?

10

Blocks of a file

Option B: Linked Lists
File header points to first block. Every block points to the next

Pros & Cons:

1. Growth problem resolved but
2. Doesn’t work well for random access

3. Blocks end up with weird sizes (212 — 4 = 4092 bytes)

11

Blocks of a file

Option C: File Allocation Table FAT
Separate linked lists from files

Physical
block
0
1
Pros & Cons: . m
1. If FAT resides in memory > i .
) 4 7 —~— File A starts here
random access is okay 5
6 3 —«— File B starts here
2. Size of FAT depends on disk 7 2
8

size! 20GB disk requires
80MB of RAM for FAT ... can
be pageable

o

-
o

12
14

-

-
n
-

-
@

-
e
-

-
o

—~— Unused block

12

Blocks of a file

Option D: Index Nodes (inodes)
Each file is associated with an inode, which is identified by an integer
number, often referred to as an i-number or inode number and
contains an index (array of pointers) to the blocks of a file.

1. Why is it better than FAT?

2. What is the drawback for short files?

3. What is the drawback for big files?

13

Blocks of a file

Option D: Index Nodes (inodes)

Each file is associated with an inode, which is identified by an integer
number, often referred to as an i-number or inode number and
contains an index (array of pointers) to the blocks of a file.

1. Why is it better than FAT? Don’t need to load inodes for closed
files.
2. What is the drawback for short files? Most inodes will be empty.

3. What is the drawback for big files? Inode size is limited

14

How to get the inode number and contents of a file

ls -i <file/dir> //gets inode number
stat -x <file/dir> //gets the contents of the inode

15

The Unix inode structure

1
2
3.
4
5

. 10 direct pointers

. 11: 1-level indirection

12: 2-level indirection

. 13: 3-level indirection

. What is the maximum file size limit

with 1 KB blocks?
1024 « (10 + 1024/4 + (1024/4)?
+(1024/4)%) = 17GB
What if we have 8KB blocks?

In earlier unix versions, we had a
sneaky problem due to where we
store inodes.

data

data

llli

data

data

16

What else is an inode?

10.

© ® N o O

. File size
. Device ID

1
2
3.
4

File type

. Protection bits, setuid (“set user ID upon execution”) and setgid

(“set group ID upon execution”) bits

Link count: for hard links to the file

. UID: file owner
. GID: group ID of owner
. Accessed and Modified timestamps of data and inode

. The pointers

What about filename?

17

On Disk Data Structures: directories

Named files/directories

How do we map a filename to an inode?
Directory: Table mapping names to inodes/FAT entries/other
directories

Read a byte from /nyuados/lab5

1. Read inode and first data block of /
2. Then inode and first data block of nyuados
3. Then inode and first data block of lab5

Write to a file

1. Read Inodes of the directories and directory file
2. Read/create the inode of the file
3. Write back the directory and the file

How to minimize all these 10s?
19

What happens when you open a file?

~

#include <stdio.h>
#include <errno.h>
int main (void) {
FILE *fp;
fp = fopen ("test.txt”,"w”);
if (fp == NULL) {
printf ("File not created, errno = %d\n”, errno);
return 1;

}

fclose (fp);
return 0O;

}

You can check the file descriptors with s -l /proc/PID/fd

20

File Descriptors

1. Each PCB has a pointer to a file descriptor table.

2. These index into a system-wide file table: a table of all files.
You can see all opened files with lsof -u user. The table records
the access mode for each file.

3. The file table indexes into a third table: the inode table that
describes the actual underlying files.

File descriptors
File table
0
! read
S Inode table
; write /home/fjoe/wikidb
1 / read-write
fete/passwd

21

The Original Unix Layout

The UNIX physical disk layout

The features:

1. Block size was 512 bytes: why such a small size?
2. Inodes on outermost cylinder

3. Data block inside

4. Linked List for Free blocks

The issues

1. Large index. Why?
2. Fixed possible number of files. Why?

3. Inodes far from data blocks. Do we always read data blocks
when we read inodes?

4. Inodes for a directory not close together. What does this hurt?

5. Sequential access hurt: poor bandwidth 20KB/s. Why?

23

Questions?

	From Last Class: Interface Decisions
	The Implementation
	On Disk Data Structures: Free Blocks
	On Disk Data Structures: Blocks of a file
	On Disk Data Structures: directories
	The Original Unix Layout

