
File Systems: Caching and Recovery

Azza Abouzied



From Last Class: File Descriptors



What happens when you open a file?

#include <stdio.h>
#include <errno.h>
int main (void) {
FILE *fp;
fp = fopen (”test.txt”,”w”);
if (fp == NULL) {
printf (”File not created, errno = %d\n”, errno);
return 1;
}
...
fclose (fp);
return 0;
}

You can check the file descriptors with ls -l /proc/PID/fd

2



File Descriptors

1. Each PCB has a pointer to a file descriptor table.

2. These index into a system-wide file table: a table of all files.
You can see all opened files with lsof -u user. The table records
the access mode for each file.

3. The file table indexes into a third table: the inode table that
describes the actual underlying files.

3



The Disk Cache aka The Page Cache



The Page Cache

What is it?
Physical pages in RAM that correspond to physical blocks on a disk.

How big is it?
It is dynamic: it can grow to consume any free memory and shrink to
relieve memory pressure.

How is it used?
On a read() system call, kernel checks cache first, if a cache hit, it
reads directly from RAM, otherwise cache miss, it schedules one or
more block I/O operations to read from disk.

What is cached?
Depends on what is accessed!

5



What about writes to the cache?

Three policies:

1. No-write: A write operation is written directly to disk and the
cache is invalidated.

2. Write-through: Write operations immediately go through the
cache to the disk. Caches are coherent i.e. synchronized and valid for
the backing store.

3. Write-back: Writes occur directly on the page cache without
immediately updating the backing store. Written-to pages are
marked as dirty and are added to a dirty list. Periodically, pages in
the dirty list are written back to disk in a process called writeback.

6



Cache Eviction

Least Recently Used (LRU):
Ideally, evict the pages least likely to be used in the future.

Keep track of when each page is accessed (or at least sort a list of
pages by access time) and evict the pages with the oldest timestamp
(or at the start of the sorted list).

This strategy works well because the longer a piece of cached data
sits idle, the less likely it is to be accessed in the near future.

Problem: many files are accessed once and then never again.

Linux implements a two-list strategy: active (hot) and inactive lists.
Pages on the inactive list are available for cache eviction.

7



How to determine a hit?

8 

How and What to Replace? 

!  Page replacement theory 
"  Use past to predict future 
"  LRU is good 

!  Buffer cache with LRU 
replacement mechanism 
"  If b is in buffer cache, move 

it to front and return b 
"  Otherwise, replace the tail 

block, get b from disk, insert 
b to the front 

"  Use double linked list with a 
hash table 

!  Questions 
"  Why a hash table? 
"  What if file >> the cache? 

… 

LRU 
(front) 

…
 

Hash 
table 

Linux doesn’t use a hash-table:

1. A single global lock
protected the hash→ high
lock contention.

2. Large hash: all pages in the
cache (other solutions had a
smaller memory footprint).

3. Poor performance on
collisions.

It uses a (radix)-tree per file.

8



The Buffer Cache

Not all block device access is through a file. Inode updates for
example are through bread().

A separate block cache: buffer cache.

Most operating systems unify the buffer and the page cache.

Why unify?

9



Crashing



The crux of Write-back

Cache more→Write faster
Cache more→Worse crash

11



When do we write back?

On...

1. Block eviction

2. File Close

3. Device Eviction

4. Explicit flush (sync() command in unix)

5. Fixed interval (flusher threads run frequently)

Issues
No guarantees! If I lose data, how much will I lose? What state will I
be in? Can I recover?

12



13



How consistent is the file system?

Inconsistencies

1. Same block in multiple files

2. Free blocks not in free list

3. Directory pointers to nowhere

4. Orphans

5. Funny attributes: bizarre modification times

A consistent file system might still have corrupt data

14



How do consistency checkers work?

Checkers:
Unix: fsck; Windows: chkdisk, scandisk

1. Start from root (/) inode

2. Traverse the entire directory tree and mark reachable files/blocks

3. Verify logical structure

4. Figure out which blocks are free

Do garbage collection: put free blocks in free list
Put orphaned files in /lost+found

15



How to recover?

partitions, with independent file systems on each partition. Sector 0 of the disk is called
the MBR (Master Boot Record ) and is used to boot the computer. The end of the MBR
contains the partition table. This table gives the starting and ending addresses of each
partition. One of the partitions in the table is marked as active. When the computer is
booted, the BIOS reads in and executes the MBR. The first thing the MBR program does
is locate the active partition, read in its first block, called the boot block , and execute it.
The program in the boot block loads the operating system contained in that partition. For
uniformity, every partition starts with a boot block, even if it does not contain a bootable
operating system. Besides, it might contain one in the future, so reserving a boot block is
a good idea anyway.

Other than starting with a boot block, the layout of a disk partition varies strongly from
file system to file system. Often the file system will contain some of the items shown in
Fig. 6-11. The first one is the superblock . It contains all the key parameters about the
file system and is read into memory when the computer is booted or the file system is
first touched. Typical information in the superblock includes a magic number to identify
the file system type, the number of blocks in the file system, and other key administrative
information.

Next might come information about free blocks in the file system, for example in the
form of a bitmap or a list of pointers. This might be followed by the i-nodes, an array of
data structures, one per file, telling all about the file. After that might come the root
directory, which contains the top of the file system tree. Finally, the remainder of the
disk typically contains all the other directories and files.

Figure 6-11. A possible file system layout.

16



The havoc of a crash

Example 1: Move a file

1. Place it in directory

2. Delete from old

Crash happens both directories have problems

Example 2: Delete a file:

1. Remove directory entry

2. Add blocks to free list

3. Update statistics in superblock

Crash happens file system logical structure hurt
17



Questions?

18


	From Last Class: File Descriptors
	The Disk Cache aka The Page Cache
	Crashing

