
From Consistency Checking to Journaling

Azza Abouzied



Reading a Paper & Writing a Critique

Critique due on Thursday (1-2 page) on The Design and
Implementation of a Log-Structured File System
by Mendel Rosenblum and John K. Ousterhout
in SOSP 1991

It is a seminal paper! So lots of positive things to say :)

We will go over it in detail next class.

1



Reading a Paper & Writing a Critique

How to read a paper in general?

The Design Arguments

2



FFS Annotated

Annotate the paper with the design arguments: Goals,
Characteristics, Approach, Context, Needs, ... etc.

3



Writing a Critique

Read the blog post https://azzablogs.com/2019/01/23/
how-to-write-a-critique-for-a-research-paper/

When writing a summary of the paper, use the design arguments to
help your describe the work.

Great critiques anticipate future contexts and needs and
re-examine the work in light of those.

1. Discuss Pros and Cons with the future in mind (or the present if
the paper is from the past).

2. Does the work handle new technology (e.g. hardware,
applications) in the horizon?

3. Does it scale to current workloads (consumer or enterprise)?
4. If not, why and how would you modify it?

4

https://azzablogs.com/2019/01/23/how-to-write-a-critique-for-a-research-paper/
https://azzablogs.com/2019/01/23/how-to-write-a-critique-for-a-research-paper/


What makes a FS inconsistent?



What are inconsistencies?

1. Same block in multiple files
2. Free blocks not in free list
3. Directory pointers to nowhere
4. Orphans
5. Funny attributes: bizarre modification times

A consistent file system might still have corrupt data

6



How do consistency checkers work?

Checkers:
Unix: fsck; Windows: chkdisk, scandisk

1. Start from root (/) inode
2. Traverse the entire directory tree and mark reachable files/blocks
3. Verify the logical structure
4. Figure out which blocks are free

Do garbage collection: put free blocks in free list
Put orphaned files in /lost+found

7



Unix (ext2) Consistency

Synchronous write-through for meta-data

→ poor performance

Multiple updates are performed in a specific order

When a crash occurs:

→ slow recovery!

1. Scan disk for consistency
2. Check for in-progress operations and fix up problems such as
file created but not in directory, block allocated but not reflected
in bitmap, etc.

What about data consistency?

→ A flush every 30 sec!

8



Unix (ext2) Consistency

Synchronous write-through for meta-data→ poor performance

Multiple updates are performed in a specific order

When a crash occurs: → slow recovery!

1. Scan disk for consistency
2. Check for in-progress operations and fix up problems such as
file created but not in directory, block allocated but not reflected
in bitmap, etc.

What about data consistency? → A flush every 30 sec!

8



Order Example

Suppose you want to extend the file by one block.

First find a free block, then the set of write operations (in no
particular order) are:

• write data
• write block bitmap
• write inode with pointer to free block and new file size

What if one write of the three succeeds?

• Just the data block?

→ It is as if nothing happened! Data is
written but no way to get to it.

• Just the updated inode is written to disk?

→ inode pointer to
garbage and block appears free.

• Just the updated bitmap is written to disk?

→ No idea who owns
the no longer free block

9



Order Example

Suppose you want to extend the file by one block.

First find a free block, then the set of write operations (in no
particular order) are:

• write data
• write block bitmap
• write inode with pointer to free block and new file size

What if one write of the three succeeds?

• Just the data block? → It is as if nothing happened! Data is
written but no way to get to it.

• Just the updated inode is written to disk? → inode pointer to
garbage and block appears free.

• Just the updated bitmap is written to disk? → No idea who owns
the no longer free block

9



Order Example

First find a free block, then the set of write operations (in no
particular order) are:

• write data
• write block bitmap
• write inode with pointer to free block and new file size

What if two writes succeed?

• Inode and data bitmap updates succeed?
• Inode and data block updates succeed?
• Data bitmap and data block succeed?

10



Order Example

What order should you perform the write operations?

11



Consistent updates

Expanding a file by a block
Metadata first

1. Find a data block
2. Write pointer into i-node
3. Write new data to the data block
4. update free bitmap

Data first

1. Find a data block
2. Write new data to block
3. Write pointer into i-node
4. Update free bitmap

Consistent updates work by ensuring a certain order of instructions.

12



Consistent Updates

Creating a new file

1. Write data block

CRASH→ writes disappear: do nothing

2. Update inode
3. Update inode bitmap
4. Update free bitmap
5. Update directory

CRASH→ File created but not in any directory:
delete file/move to lost+found

If directory needs another data block:

1. update free bitmap
2. update directory inode

13



Consistent Updates

Creating a new file

1. Write data block CRASH→ writes disappear: do nothing
2. Update inode
3. Update inode bitmap
4. Update free bitmap
5. Update directory

CRASH→ File created but not in any directory:
delete file/move to lost+found

If directory needs another data block:

1. update free bitmap
2. update directory inode

13



Consistent Updates

Creating a new file

1. Write data block

CRASH→ writes disappear: do nothing

2. Update inode
3. Update inode bitmap
4. Update free bitmap
5. Update directory CRASH→ File created but not in any directory:
delete file/move to lost+found

If directory needs another data block:

1. update free bitmap
2. update directory inode

13



Can you get better data consistency?

Sometimes meta-data consistency is good enough

How should vi save changes to a file to disk?

1. Write new version in temp file
2. Move old version to another temp file
3. Move new version into real file
4. Unlink old version

If crash, look at temp area; if any files out there, notify user that there
might be a problem!

14



Transactions



From Consistent Updates to Transactions

What if multiple file operations need to occur as a unit: money
transfer for e.g? atomic operations?

DB concept: group many operations into a transaction and ensure
ACID

1. Atomicity: the collection of txns either happens or it doesn’t ...
no partially happened

2. Consistency: We move from one consistent state to the next
3. Isolation (Serializability): Transactions appear to happen one
after the other

4. Durability (Persistence): once it happens, it happened (no data
loss)

16



Money Transfer Example

Consider moving 100$ from account A to B

T1:
Begin
If(A >= 100)
A = A - 100
B = B + 100

else
Abort

Commit

1. Transactions can run concurrently so we must ensure Isolation
(What happens if T2 deletes A?)

2. Aborts (also crashes) can happen anytime

17



Ensuring Isolation

Simple Locking scheme: Two phase locking (2PL)
Two lock types: shared/read locks & exclusive/write locks.

Phase 1 (Growing): Acquire all locks on records that a tx will affect
You can upgrade a read to a write lock (but you can’t downgrade)

Phase 2 (Shrinking): Release locks cannot acquire new ones.

Commit or Abort.

Does this ensure absence of deadlocks?

Does this ensure isolation?

18



Everything Else

Critical sections give us atomicity and serializability, but not
durability

Write Ahead Logging

Begin Log all updates to a Write-Ahead-Log on disk

Commit

1. Write commit to the end of the log.
2. Then actually write the updates to the correct locations on disk
3. Clear the log

Abort Clear the log

Crash Recovery
No commit: do nothing
Commit: replay the log, then clear the log

19



WAL in Action

Begin
A = A - 100
B = B + 100

Commit

1. Write A-=100 to log
2. Write B+=100 to log
3. Write commit to log
4. Write A to disk
5. Write B to disk
6. Clear the log

Can we swap 3 and 4? Can we swap 4 and 5?

20



Transactions and File Systems

Option 1: Each operation is a transaction
Create/move/write
Does this eliminate the need for fsck?

Option 2: Arbitrary # of operations form a transaction
Log operations to make a very long operation
Recovery: replay the log
This is journaling or logging file system: Windows NTFS, Mac OS X
Extended, Linux ext3 File system, etc.

1. Write an entry in the journal to describe the change
2. Implement the change in the file system
3. Mark the journal entry as completed
4. Eventually reclaim space used by completed journal entries

21



Journaling and WAL

What happens on a crash?

At recovery time, instead of scanning the entire disk to look for
inconsistencies, we can just look at the uncompleted journal entries
and carry out whichever ones have not actually taken effect in the
main filesystem. (Any partial journal entries are ignored.) Linux ext3
filesystem.

What happens if we journal adding a block to the end of a file
before we actually write the block?

Some of this corruption can be avoided by carefully scheduling the
order of disk operations, but this may conflict with other disk
scheduling goals (like not moving the head too much). Ext3 has
barriers that force order!

22



Journaling Key Advantage

Guarantee consistency with minimal recovery time

High price: We update twice, once in the journal and once in the
actual file. But we can

1. do actual writes later
2. sequential log means higher write bandwidth
3. Use Flash or NVRAM for logs
4. Journal metadata only and not file contents

23



What to Log?

Physical
Log block images
Before: enables rollback
After: enables moving forward
Both: go either way

Logical
Example: Add file x to directory y
More compact more recovery work!

24



Questions?

25


	What makes a FS inconsistent?
	Transactions

