
Virtualization

Azza Abouzied



A Recap of everything



Central OS Concept: Abstraction

We build systems on levels of abstractions. Higher levels hide
lower level details.

Abstractions so far:

1. Processes: abstract CPU, multiple programs.

2. Device Drivers: hide details of hardware

3. Virtual Memory: abstract memory

2



The right level of Abstraction

3



Why do we abstract?

1. Decouple problems

2. Hardware and software development out of sync

3. Run software on any machine

But the reality is:

1. Software for one ISA will not run on hardware with different ISA
e.g. ARM vs. x86

2. Same ISAs different OS

4



Focused Only on Hardware Abstraction

OS manages hardware e.g. memory, or interfaces with device drivers
→ Can’t share hardware without OS

If you want to use the hardware, you have to stick with the OS & its
design choices

We need Modularity / Plug-n-Play Services

If you are using an OS, you are vulnerable to attacks because of
users sharing the OS!

We also need Isolation

5



An OS Goal: Strong Isolation



Monolithic Kernels: Linux

7



What’s the problem?

1. Security issues
• Everything within the kernel runs in privileged mode
• Direct access to all kernel-level data
• Haven for rootkits

2. Resilience issues
• A faulty device can crash the whole system
• Today’s kernels have lots of drivers (more than 50% of the
codebase)

3. Software Complexity

8



A Microkernel

1. Minimal OS kernel
• Small Trusted Computing Base
• Can be verified (formally)

2. User-level services
• Flexible & Extensible

3. Protection between components
• More resilient: crashing component does not (necessarily...) crash
the whole system

• More secure

9



The Microkernel Vision

10



A Microkernel Case-study: IBMWorkplace OS

11



A Microkernel Case-study: IBMWorkplace OS

Never finished (but spent 1 billion $), Why?

• Underestimated difficulties in creating OS personalities

• Forced divisions to adopt new system without having a system

• Second System Effect: too many fancy features

• Slow & Somewhat still complex

12



What are a µKernel’s main advantages?

There are always research µKernels popping up: Minix, L4,
Singularity (MSR), etc.

• Subsystem protection / isolation

• Small code size

• Can be adapted to embedded, real-time, secure systems, etc.

“A microkernel does no real work!” — Jochen Liedtke

It only provides inevitablemechanisms: Abstractions such as
threads and address spaces and Mechanisms such as
communication, resource mapping, and maybe scheduling.

13



Virtual Machines



Isolation++

Microkernel: Isolated Processes & OS services

Virtual Machines: Isolate Complete Operating Systems
Side-effect: Balance Isolation with Compatability

15



How to implement a VMM?: Emulation

Pure emulation (e.g. QEMU, Bochs): VMM interprets every guest
instruction

for(;;){
read_instruction();
switch(decode_instruction_opcode()){
case OPCODE_ADD:
int src = decode_src_reg();
int dst = decode_dst_reg();
regs[dst] = regs[dst] + regs[src];
break;

case OPCODE_SUB:
...
regs[dst] = regs[dst] - regs[src];
break;

...
}
eip += instruction_length;

}

16



Challenges

Pure Emulation is very slow! Every instruction needs to be
interpreted.

Some workarounds: Patch guest instructions directly to hardware.
Generally works for user code.

1. But what about privileged instructions?

2. What hardware state should we virtualize?

17



Principles of a VM Architecutre

Equivalence
VM indistinguishable from the underlying hardware

Resource Control
VM in complete control of any virtualized resources

Efficiency
Most instructions should be executed directly on the underlying CPU
without involving the Hypervisor

Popek & Goldberg 1974

18



Equivalence: Breaking the Illusion

19



Equivalence: Keeping the Illusion

1. Use CPU’s breakpoint mechanism: Scan code to figure out
where to put breakpoints→ Overhead

2. Use code-rewrite: Replace critical instructions with system call
to hypervisor→ breaks illsuion→ Trick: mark rewritten pages as
non-readable, trap and give it original page.

3. Paravirtualization: Guest OS rewrites itself to run on VMM→
breaks illsuion, compatiblity

4. Use CPU support/accelerated virtualization/hardware-assisted:
two new modes: host mode, guest kernel mode, and user mode
the same.

20



What and how to virtualize

Each guestOS as-
sumes it manages:

1. Physical
memory

2. Page-table
pointer

3. U/K bit

4. Interrupts,
registers, etc.

21



How to virtualize memory

Add another level of indirection

VMM must translate guest OS addresses into actual memory
addresses. e.g. if guest VM has 1GB of memory, it will access
memory addrs [0 - 1GB], but VMM may map these to some other
place in physical memory.

22



How to virtualize PTP?

• Guest VM’s page table maps from guest VAs to guest PAs.

• Hardware page table must point to host PAs (actual DRAM
locations).

• Setting hardware PTP register to point to guest PT would not
work, since that would allow guest OS to choose which PAs it
wants to access.

Process:

1. VMM intercepts guest OS loading PTP.

2. VMM iterates over guest PT and constructs shadow PT:
Replacing guest physical addresses with corresponding host
physical addresses

3. VMM loads host physical address of shadow PT into PTP

23



The Process in a Diagram

24



Translating from guest address to physical address

25



Trap & Emulate: PT modification

1. Host maps guest PT read-only

2. Guest modifies its PT

3. If guest modifies, hardware generates page fault

4. Page fault handled by host: Update shadow page

5. Restart guest

26



Virtualizing the U/K bit

1. Hardware U/K bit must be U when guest OS runs otherwise
guest OS can do whatever it wants→ Strong isolation

2. Behavior affected by U/K bit

3. Execute privileged instructions: e.g. load PTP

4. Whether pages marked “read only” in page table can be
modified.

27



Trap & Emulate: U/K bit

1. VMM stores guest U/K bit in some location

2. VMM runs guest kernel with U set
3. Privileged instructions will cause an exception, and VMM
emulates privileged instructions. For example:
• Set or read virtual U/K
• if load PTP in virtual K mode, load shadow page table

4. Or raise exception in guest OS

28



Hardware Support Can Simplify Things Alot

AMD and Intel added hardware support

VMM operating mode, in addition to U/K

Two levels of page tables

Simplifies job of VMM implementer:

• Let the guest VM manipulate the U/K bit, as long as VMM bit is
cleared.

• Let the guest VM manipulate the guest PT, as long as host PT is
set.

29



Why does Amazon use/provide VMMs?



VMM Functions

31



VMM Benefits

Manageability
Ease maintenance, administration, provisioning

Performance
Overhead of virtualization should be small

Power Savings

Server Consolidation

Isolation
Activity of one VM should not impact other active VMs
Data of one VM is inaccessible by another

Scalability
Minimize cost per VM

32



Questions?

33


	A Recap of everything
	An OS Goal: Strong Isolation
	Virtual Machines
	Why does Amazon use/provide VMMs?

